This article may be confusing or unclear to readers. (April 2015) |
In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G (Ballester-Bolinches, Esteban-Romero & Asaad 2010, pp. 24–25).
Kenkichi Iwasawa (1941) proved that a p-group G is an Iwasawa group if and only if one of the following cases happens:
In Berkovich & Janko (2008, p. 257), Iwasawa's proof was deemed to have essential gaps, which were filled by Franco Napolitani and Zvonimir Janko. Roland Schmidt (1994) has provided an alternative proof along different lines in his textbook. As part of Schmidt's proof, he proves that a finite p-group is a modular group if and only if every subgroup is permutable, by (Schmidt 1994, Lemma 2.3.2, p. 55).
Every subgroup of a finite p-group is subnormal, and those finite groups in which subnormality and permutability coincide are called PT-groups. In other words, a finite p-group is an Iwasawa group if and only if it is a PT-group.[citation needed]