JULES (Joint UK Land Environment Simulator) is a land-surface parameterisation model scheme describing soil-vegetation-atmosphere interactions.[ 1] JULES is a community led[citation needed ] project which evolved from MOSES, the United Kingdom Meteorological Office (Met Office) Surface Exchange Scheme.[ 2] It can be used as a stand-alone model or as the land surface part of the Met Office Unified Model.[ 2] JULES has been used to help decide what tactics would be effective to help meet the goals of the Paris Agreement .[ 3] As well as use by the Met Office climate modelling group[ 4] a number of studies have cited JULES and used it as a tool to assess the effects of climate change , and to simulate environmental factors from groundwater to carbon in the atmosphere .[ 5] [ 6] [ 7] [ 8] [ 9]
JULES has been described as the most accurate global carbon budget model of net ecosystem productivity, because it has more years of data than other models.[ 10]
^ "Joint UK Land Environment Simulator (JULES)" . Joint UK Land Environment Simulator (JULES) . Retrieved 2020-08-19 .
^ a b "Joint UK Land Environment Simulator (JULES)" . Met Office . Retrieved 2020-08-19 .
^ Phelan, Matthew (7 August 2018). "Meeting Paris Agreement Global Warming Goals May Require Lots More Forests" . Inverse . Retrieved 2020-08-15 .
^ "Climate impacts" . Met Office . Retrieved 2020-08-19 .
^ Osborne, T.; Gornall, J.; Hooker, J.; Williams, K.; Wiltshire, A.; Betts, R.; Wheeler, T. (October 2014). "JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator" (PDF) . Geoscientific Model Development Discussions . 7 (5): 6773–6809. Bibcode :2014GMDD....7.6773O . doi :10.5194/gmdd-7-6773-2014 .
^ Best, M. J.; Pryor, M.; Clark, D. B.; Rooney, G. G.; Essery, R. L. H.; Ménard, C. B.; Edwards, J. M.; Hendry, M. A.; Porson, A.; Gedney, N.; Mercado, L. M. (2011). "The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes" . Geoscientific Model Development . 4 (3): 677–699. Bibcode :2011GMD.....4..677B . doi :10.5194/gmd-4-677-2011 . hdl :20.500.11820/f4a1d33b-17bd-4b8b-8b72-c511ab7a5948 . ISSN 1991-9603 .
^ Yuan, Wenping; Zheng, Yi; Piao, Shilong; Ciais, Philippe; Lombardozzi, Danica; Wang, Yingping; Ryu, Youngryel; Chen, Guixing; Dong, Wenjie; Hu, Zhongming; Jain, Atul K. (2019-08-01). "Increased atmospheric vapor pressure deficit reduces global vegetation growth" . Science Advances . 5 (8): eaax1396. Bibcode :2019SciA....5.1396Y . doi :10.1126/sciadv.aax1396 . ISSN 2375-2548 . PMC 6693914 . PMID 31453338 .
^ Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai (2016-02-12). "Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China" . Scientific Reports . 6 (1): 20905. Bibcode :2016NatSR...620905Y . doi :10.1038/srep20905 . ISSN 2045-2322 . PMC 4751438 . PMID 26867481 .
^ Batelis, Stamatis-Christos; Rahman, Mostaquimur; Kollet, Stefan; Woods, Ross; Rosolem, Rafael (2020). "Towards the representation of groundwater in the Joint UK Land Environment Simulator" . Hydrological Processes . 34 (13): 2843–2863. Bibcode :2020HyPr...34.2843B . doi :10.1002/hyp.13767 . hdl :1983/dbebc317-eec9-4bf7-9ef7-08f8d7b28423 . ISSN 1099-1085 .
^ Davies-Barnard, Taraka; Meyerholt, Johannes; Zaehle, Sönke; Friedlingstein, Pierre; Brovkin, Victor; Fan, Yuanchao; Fisher, Rosie A.; Jones, Chris D.; Lee, Hanna; Peano, Daniele; Smith, Benjamin; Wårlind, David; Wiltshire, Andy J. (2020). "Nitrogen Cycling in CMIP6 Land Surface Models: Progress and Limitations" (PDF) . Biogeosciences (Preprint) . 17 (20): 5129. Bibcode :2020BGeo...17.5129D . doi :10.5194/bg-17-5129-2020 .