Jacobi's formula

In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A.[1]

If A is a differentiable map from the real numbers to n × n matrices, then

where tr(X) is the trace of the matrix X and is its adjugate matrix. (The latter equality only holds if A(t) is invertible.)

As a special case,

Equivalently, if dA stands for the differential of A, the general formula is

The formula is named after the mathematician Carl Gustav Jacob Jacobi.

  1. ^ Magnus & Neudecker (1999, pp. 149–150), Part Three, Section 8.3