Jellyfish blooms are substantial growths in population of species under the phyla Cnidaria (including several types of jellyfish) and Ctenophora (comb jellies).
Blooms may take place naturally as a result of ocean and wind patterns,[1] ecosystem shifts, and jellyfish behaviors though their occurrence is thought to have increased during the last several decades in near-shore regions and shallow seas around the world.[2] Changes in ocean conditions including eutrophication,[3]hypoxia,[4] rising ocean temperatures,[2] and coastal development, among others[5] are thought to be the main causes of increasing jellyfish blooms. Little is known regarding how future environmental conditions will affect jellyfish blooms, though this is a growing field of research.[6]
Jellyfish blooms significantly impact ecological community composition and structure by reducing available prey for higher predators.[7][4][1] Blooms also significantly alter carbon, nitrogen, and phosphorus cycling, shifting the availability to microbial communities.[7] Recent blooms have commonly overlapped with multiple industries, reducing fisheries catch,[8] clogging fishing nets and power plant pipes,[9] and overwhelming popular beach destinations leading to closures.[3]
^ abCondon, Robert H.; Steinberg, Deborah K.; del Giorgio, Paul A.; Bouvier, Thierry C.; Bronk, Deborah A.; Graham, William M.; Ducklow, Hugh W. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. National Academy of Sciences. OCLC811394885.
^Brotz, Lucas; Cheung, William W. L.; Kleisner, Kristin; Pakhomov, Evgeny; Pauly, Daniel (2012), Purcell, Jennifer; Mianzan, Hermes; Frost, Jessica R. (eds.), "Increasing jellyfish populations: trends in Large Marine Ecosystems", Jellyfish Blooms IV: Interactions with humans and fisheries, Developments in Hydrobiology, Springer Netherlands, pp. 3–20, doi:10.1007/978-94-007-5316-7_2, ISBN9789400753167
^ abPitt, Kylie; Welsh, David; Condon, Robert (January 2009). "Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production". Hydrobiologia. 616: 133–149. doi:10.1007/s10750-008-9584-9. S2CID22838905.