John Argyris

John Argyris
Born
Johann Hadji Argyris

(1913-08-19)19 August 1913
Volos, Greece
Died2 April 2004(2004-04-02) (aged 90)
Stuttgart, Germany
Alma mater
Known forFinite element method
Awards
Scientific career
Institutions

Johann Hadji Argyris FRS[1] (Greek: Ιωάννης Χατζι Αργύρης; 19 August 1913 – 2 April 2004) was a Greek pioneer of computer applications in science and engineering,[2] among the creators of the finite element method (FEM), and later Professor at the University of Stuttgart and Director of the Institute of Structural Mechanics and Dynamics in Aerospace Engineering.[3][4][5][6][7][8][9]

  1. ^ a b Spalding, D. B. (2014). "John Hadji Argyris 19 August 1913 -- 2 April 2004". Biographical Memoirs of Fellows of the Royal Society. 60: 23–37. doi:10.1098/rsbm.2013.0003. S2CID 70761777.
  2. ^ Hughes TJR, Oden JT, and Papadrakakis M (2011) John H Argyris, Memorial Tributes: National Academy of Engineering, 15, 24–31.
  3. ^ Doltsinis, I. (2004). "Obituary for John Argyris". Communications in Numerical Methods in Engineering. 20 (9): 665–669. doi:10.1002/cnm.709.
  4. ^ Doltsinis, I. (2004). "Obituary". International Journal for Numerical Methods in Engineering. 60 (10): 1633–1637. Bibcode:2004IJNME..60.1633D. doi:10.1002/nme.1131.
  5. ^ John Argyris's publications indexed by the Scopus bibliographic database. (subscription required)
  6. ^ Argyris, J. (1982). "An excursion into large rotations". Computer Methods in Applied Mechanics and Engineering. 32 (1–3): 85–155. Bibcode:1982CMAME..32...85A. doi:10.1016/0045-7825(82)90069-X.
  7. ^ Argyris, J.; Fuentes, A.; Litvin, F. L. (2002). "Computerized integrated approach for design and stress analysis of spiral bevel gears". Computer Methods in Applied Mechanics and Engineering. 191 (11–12): 1057. Bibcode:2002CMAME.191.1057A. doi:10.1016/S0045-7825(01)00316-4.
  8. ^ Argyris, J. H.; Balmer, H.; Doltsinis, J. S.; Dunne, P. C.; Haase, M.; Kleiber, M.; Malejannakis, G. A.; Mlejnek, H. -P.; Müller, M.; Scharpf, D. W. (1979). "Finite element method – the natural approach". Computer Methods in Applied Mechanics and Engineering. 17–18: 1–106. Bibcode:1979CMAME..17....1A. doi:10.1016/0045-7825(79)90083-5.
  9. ^ Argyris, J.; Tenek, L.; Olofsson, L. (1997). "TRIC: A simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells". Computer Methods in Applied Mechanics and Engineering. 145 (1–2): 11–85. Bibcode:1997CMAME.145...11A. doi:10.1016/S0045-7825(96)01233-9.