John Hazzidakis

John Hazzidakis
BornApril 13, 1844
Myrthios Rethymno, Crete, Ottoman Empire
Died1921(1921-00-00) (aged 76–77)
Athens, Greece
NationalityGreek
Alma materUniversity of Athens
Known forHazzidakis transform
ChildrenGeorgios Hatzidakis
Nikolaos Hatzidakis
Scientific career
FieldsClassical Mechanics
Physics
Mathematics
InstitutionsUniversity of Athens
Doctoral advisorsVassilios Lakon

Ioannis "John" N. Hazzidakis (Ιωάννης Χατζιδάκις, or Hatzidakis or Chatzidakis, April 13, 1844 – 1921) was a Greek mathematician, physicist, author, and professor. He is one of the most important mathematicians of the modern Greek scientific era. His professor was world renowned Greek mathematician Vassilios Lakon. He also studied with famous German mathematicians Ernst Kummer, Leopold Kronecker, Karl Weierstrass. He systematically worked in the field of research and education. He wrote textbooks in the field of algebra, geometry, and calculus. Hazzidakis essentially adopted some elements of Lacon's Geometry. He introduced the Hazzidakis transform in differential geometry. [1][2][3][4] The Hazzidakis formula for the Hazzidakis transform can be applied in proving Hilbert's theorem on negative curvature, stating that hyperbolic geometry does not have a model in 3-dimensional Euclidean space.[5][6]

  1. ^ Rassias, Themistocles M. "The Greek Mathematical Society" (PDF). European Mathematical Society (newsletter) September 2004. pp. 34–35.
  2. ^ Hazzidakis, J. N. (1879). "Ueber einige Eigenschaften der Flächen mit constantem Krümmungsmaass". Journal für die reine und angewandte Mathematik. 88: 68–73.
  3. ^ Eisenhart, Luther Pfahler (1905). "Surfaces of constant curvature and their transformations". Trans. Amer. Math. Soc. 6 (4): 472–485. doi:10.1090/S0002-9947-1905-1500722-0.
  4. ^ Eisenhart, L. P. (1907). "Applicable surfaces with asymptotic lines of one surface corresponding to a conjugate system of another". Trans. Amer. Math. Soc. 8: 113–134. doi:10.1090/S0002-9947-1907-1500778-7. Erratum: Trans. Amer. Math. Soc. 8 (1907), 535
  5. ^ McCleary, John (1994). Geometry from a Differential Viewpoint. Cambridge University Press. p. 206. ISBN 978-0-521-42480-6.
  6. ^ Stefanidou 1952, pp. 18–19.