Ellipsoid most closely containing, or contained in, an n-dimensional convex object
In mathematics, the John ellipsoid or Löwner–John ellipsoidE(K) associated to a convex bodyK in n-dimensionalEuclidean space can refer to the n-dimensional ellipsoid of maximal volume contained within K or the ellipsoid of minimal volume that contains K.
Often, the minimal volume ellipsoid is called the Löwner ellipsoid, and the maximal volume ellipsoid is called the John ellipsoid (although John worked with the minimal volume ellipsoid in his original paper).[1] One can also refer to the minimal volume circumscribed ellipsoid as the outerLöwner–John ellipsoid, and the maximum volume inscribed ellipsoid as the innerLöwner–John ellipsoid.[2]
The German-American mathematicianFritz John proved in 1948 that each convex body in is circumscribed by a unique ellipsoid of minimal volume, and that the dilation of this ellipsoid by factor 1/n is contained inside the convex body.[3] That is, the outer Lowner-John ellipsoid is larger than the inner one by a factor of at most n. For a balanced body, this factor can be reduced to
^John, Fritz. "Extremum problems with inequalities as subsidiary conditions". Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187—204. Interscience Publishers, Inc., New York, N. Y., 1948. OCLC1871554MR30135