Kadison transitivity theorem

In mathematics, Kadison transitivity theorem is a result in the theory of C*-algebras that, in effect, asserts the equivalence of the notions of topological irreducibility and algebraic irreducibility of representations of C*-algebras. It implies that, for irreducible representations of C*-algebras, the only non-zero linear invariant subspace is the whole space.

The theorem, proved by Richard Kadison, was surprising as a priori there is no reason to believe that all topologically irreducible representations are also algebraically irreducible.