This article needs additional citations for verification. (December 2009) |
In category theory and its applications to other branches of mathematics, kernels are a generalization of the kernels of group homomorphisms, the kernels of module homomorphisms and certain other kernels from algebra. Intuitively, the kernel of the morphism f : X → Y is the "most general" morphism k : K → X that yields zero when composed with (followed by) f.
Note that kernel pairs and difference kernels (also known as binary equalisers) sometimes go by the name "kernel"; while related, these aren't quite the same thing and are not discussed in this article.