Klee's measure problem

A set of rectangular ranges ('trellis') whose area has to be measured.

In computational geometry, Klee's measure problem is the problem of determining how efficiently the measure of a union of (multidimensional) rectangular ranges can be computed. Here, a d-dimensional rectangular range is defined to be a Cartesian product of d intervals of real numbers, which is a subset of Rd.

The problem is named after Victor Klee, who gave an algorithm for computing the length of a union of intervals (the case d = 1) which was later shown to be optimally efficient in the sense of computational complexity theory. The computational complexity of computing the area of a union of 2-dimensional rectangular ranges is now also known, but the case d ≥ 3 remains an open problem.