L-infinity

In mathematics, , the (real or complex) vector space of bounded sequences with the supremum norm, and , the vector space of essentially bounded measurable functions with the essential supremum norm, are two closely related Banach spaces. In fact the former is a special case of the latter. As a Banach space they are the continuous dual of the Banach spaces of absolutely summable sequences, and of absolutely integrable measurable functions (if the measure space fulfills the conditions of being localizable and therefore semifinite).[1] Pointwise multiplication gives them the structure of a Banach algebra, and in fact they are the standard examples of abelian Von Neumann algebras.

  1. ^ "Elementary set theory - Why every localizable measure space is semifinite measure space?".