LF-space

In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces.[1] This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces.

If each of the bonding maps is an embedding of TVSs then the LF-space is called a strict LF-space. This means that the subspace topology induced on Xn by Xn+1 is identical to the original topology on Xn.[1][2] Some authors (e.g. Schaefer) define the term "LF-space" to mean "strict LF-space," so when reading mathematical literature, it is recommended to always check how LF-space is defined.

  1. ^ a b Schaefer & Wolff 1999, pp. 55–61.
  2. ^ Helgason, Sigurdur (2000). Groups and geometric analysis : integral geometry, invariant differential operators, and spherical functions (Reprinted with corr. ed.). Providence, R.I: American Mathematical Society. p. 398. ISBN 0-8218-2673-5.