Laser-induced fluorescence

Laser-induced fluorescence (LIF) or laser-stimulated fluorescence (LSF)[1] is a spectroscopic method in which an atom or molecule is excited to a higher energy level by the absorption of laser light followed by spontaneous emission of light.[2][3] It was first reported by Zare and coworkers in 1968.[4][5]

LIF is used for studying structure of molecules, detection of selective species and flow visualization and measurements. The wavelength is often selected to be the one at which the species has its largest cross section. The excited species will after some time, usually in the order of few nanoseconds to microseconds, de-excite and emit light at a wavelength longer than the excitation wavelength. This fluorescent light is typically recorded with a photomultiplier tube (PMT) or filtered photodiodes.

  1. ^ Kaye, T.G.; Falk, A.R.; Pittman, M.; Sereno, P.C.; Martin, L.D.; Burnham, D.A.; Gong, E.; Xu, X.; Wang, Y. (2015). "Laser-Stimulated Fluorescence in Paleontology". PLOS ONE. 10 (5): e0125923. Bibcode:2015PLoSO..1025923K. doi:10.1371/journal.pone.0125923. PMC 4446324. PMID 26016843.
  2. ^ Kinsey, J L (1977). "Laser-Induced Fluorescence". Annual Review of Physical Chemistry. 28 (1): 349–372. Bibcode:1977ARPC...28..349K. doi:10.1146/annurev.pc.28.100177.002025. ISSN 0066-426X.
  3. ^ Richard W. Solarz; Jeffrey A. Paisner (29 September 1986). Laser Spectroscopy and its Applications. CRC Press. pp. 623–. ISBN 978-0-8247-7525-4.
  4. ^ Tango, William J. (1968). "Spectroscopy of K2 Using Laser-Induced Fluorescence". The Journal of Chemical Physics. 49 (10): 4264–4268. Bibcode:1968JChPh..49.4264T. doi:10.1063/1.1669869. ISSN 0021-9606.
  5. ^ Zare, R. N. (2012). "My Life with LIF: A Personal Account of Developing Laser-Induced Fluorescence". Annual Review of Analytical Chemistry. 5: 1–14. Bibcode:2012ARAC....5....1Z. doi:10.1146/annurev-anchem-062011-143148. PMID 22149473. S2CID 44885260.