Mathematical analysis → Complex analysis |
Complex analysis |
---|
Complex numbers |
Complex functions |
Basic theory |
Geometric function theory |
People |
In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass had previously described it in a paper written in 1841 but not published until 1894.[1]
Weierstrass, Karl (1841), "Darstellung einer analytischen Function einer complexen Veränderlichen, deren absoluter Betrag zwischen zwei gegebenen Grenzen liegt" [Representation of an analytical function of a complex variable, whose absolute value lies between two given limits], Mathematische Werke (in German), vol. 1, Berlin: Mayer & Müller (published 1894), pp. 51–66