Lead(II) thiocyanate

Lead(II) thiocyanate
Names
IUPAC name
Lead(II) thiocyanate
Systematic IUPAC name
Lead(II) thiocyanate
Other names
Lead dithiocyanate, lead isothiocyanate, lead sulfocyanate, lead thiocyanate, lead thiocyanate (Pb(SCN) 2), lead(II) thiocyanate, lead(II) thiocyanate (Pb(NCS) 2), thiocyanic acid, lead(2+) salt
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.008.887 Edit this at Wikidata
EC Number
  • 209-774-6
UNII
  • InChI=1S/2CHNS.Pb/c2*2-1-3;/h2*3H;/q;;+2/p-2 ☒N
    Key: VRNINGUKUJWZTH-UHFFFAOYSA-L ☒N
  • C(#N)[S-].C(#N)[S-].[Pb+2]
Properties
Pb(SCN)2
Molar mass 323.3648 g/mol
Appearance white or light yellow powder
Odor odorless
Density 3.82 g/cm3
Melting point 190 °C (374 °F; 463 K)
0.553 g/100 mL
Solubility soluble in nitric acid
−82.0·10−6 cm3/mol
Hazards
GHS labelling:
GHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
H302, H312, H332, H360, H373, H410
P201, P202, P260, P261, P264, P270, P271, P273, P280, P281, P301+P312, P302+P352, P304+P312, P304+P340, P308+P313, P312, P314, P322, P330, P363, P391, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
1
1
1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lead(II) thiocyanate is a compound, more precisely a salt, with the formula Pb(SCN)2. It is a white crystalline solid, but will turn yellow upon exposure to light. It is slightly soluble in water and can be converted to a basic salt (Pb(CNS)2·Pb(OH)2 when boiled. Salt crystals may form upon cooling.[1] Lead thiocyanate can cause lead poisoning if ingested and can adversely react with many substances. It has use in small explosives, matches, and dyeing.

Lead(II)Thiocyanate in both compound( top) and salt (bottom) forms.

Lead(II) thiocyanate is reasonably soluble at room temperature, thus it may be difficult to identify in a solution with low concentration of lead(II) thiocyanate. Although it has not been confirmed by other sources than the author of this[which?] article, experiments show that even if there is no precipitation of lead(II) thiocyanate in the solution, crystals of the salt may form.

  1. ^ Urbanski, Tadeusz (1967). Chemistry and Technology of Explosives. Pergamon Press. pp. Volume 3, 230.