Leaf area index

Leaf area index (LAI) is a dimensionless quantity that characterizes plant canopies. It is defined as the one-sided green leaf area per unit ground surface area (LAI = leaf area / ground area, m2 / m2) in broadleaf canopies.[1] In conifers, three definitions for LAI have been used:

  • Half of the total needle surface area per unit ground surface area [2]
  • Projected (or one-sided, in accordance the definition for broadleaf canopies) needle area per unit ground area
  • Total needle surface area per unit ground area [3]

The definition “half the total leaf area” pertains to biological processes, such as gas exchange, whereas the definition “projected leaf area” was disregarded because the projection of a given area in one direction may differ in another direction when leaves are not flat, thick, or 3D-shaped. Moreover, “ground surface area” is specifically defined as “horizontal ground surface area” to clarify LAI on a sloping surface. The definition “half the total leaf area per unit horizontal ground surface area” is suitable for all kinds of leaves and flat or sloping surfaces.[4]

A leaf area index (LAI) expresses the leaf area per unit ground or trunk surface area of a plant and is commonly used as an indicator of the growth rate of a plant. LAI is a complex variable that relates not only to the size of the canopy, but also to its density, and the angle at which leaves are oriented in relation to one another and to light sources. In addition, LAI varies with seasonal changes in plant activity,[5] and is typically highest in the spring when new leaves are being produced and lowest in late summer or early fall when leaves senesce (and may be shed). The study of LAI is called "phyllometry."[6]

  1. ^ Watson, D.J. (1947). "Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties and within and between years". Annals of Botany. 11: 41–76. doi:10.1093/oxfordjournals.aob.a083148.
  2. ^ Chen, J.M.; Black, T.A. (1992). "Defining leaf area index for non-flat leaves". Agricultural and Forest Meteorology. 57: 1–12. doi:10.1016/0168-1923(91)90074-z.
  3. ^ GHOLZ, HENRY L.; FITZ, FRANKLIN K.; WARING, R.H. (1976). "Leaf area differences associated with old-growth forest communities in the western Oregon Cascades". Canadian Journal of Forest Research. 6 (1): 49–57. doi:10.1139/x76-007. S2CID 85319218.
  4. ^ Yan, G.J.; Hu, R.H.; Luo, J.H.; Marie, W.; Jiang, H.L.; Mu, X.H.; Xie, D.H.; Zhang, W.M. (2019). "Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives". Agricultural and Forest Meteorology. 265: 390–411. Bibcode:2019AgFM..265..390Y. doi:10.1016/j.agrformet.2018.11.033.
  5. ^ Maass, JoséManuel; Vose, James M.; Swank, Wayne T.; Martínez-Yrízar, Angelina (1995-06-01). "Seasonal changes of leaf area index (LAI) in a tropical deciduous forest in west Mexico". Forest Ecology and Management. 74 (1): 171–180. Bibcode:1995ForEM..74..171M. doi:10.1016/0378-1127(94)03485-F. ISSN 0378-1127.
  6. ^ Tomažič, Irma; Korošec-Koruza, Zora (2003-11-01). "Validity of Phyllometric Parameters Used to Differentiate Locan Vitis Vinifera L. Cultivars". Genetic Resources and Crop Evolution. 50 (7): 773–778. doi:10.1023/A:1025085012808. ISSN 1573-5109. S2CID 6333777.