Legacy sediment

Legacy sediment (LS) is depositional bodies of sediment inherited from the increase of human activities since the Neolithic.[1][2] These include a broad range of land use and land cover changes, such as agricultural clearance,[3][4][5][6][7] lumbering and clearance of native vegetation,[8][9][10] mining,[11][12][13] road building,[14][15][16][17] urbanization,[18][19][20] as well as alterations brought to river systems in the form of dams and other engineering structures meant to control and regulate natural fluvial processes (erosion, deposition, lateral migration, meandering).[21][22][23] The concept of LS is used in geomorphology, ecology, as well as in water quality and toxicological studies.

LS is distributed in spatially heterogeneous ways throughout a landscape and accumulates to form various landforms. It can progress through the fluvial system through facies changes from hillslope colluvium, to floodplain and wetland alluvium, to fine-grained lacustrine and estuarine slackwater deposits.[1] The temporal nature of LS is time-transgressive, meaning that initiation and peak rates of deposition can take place at different times within a fluvial system, as well as at different times between regions. The intermittent transport of LS can be thought of as a cascading system that reworks LS deposits from hillslopes, into channels and onto floodplains, such that anthropogenic sediment will be mixed with and non-anthropogenic sediment.[24]

River systems record past and present imprints of anthropogenically-forced changes to the environment. LS is an element of change in this context, as it drives fluxes of energy and matter (connectivity) through fluvial systems and provides indication of past land-uses and river dynamics that can inform future trajectories of river response. In this sense, acknowledging the concept of LS can benefit informed policy development in stream restoration,[1] water quality [25] and sediment budget[26] management, protection of aquatic ecosystems,[27] and flood risk. Moreover, the implications of legacy effects associated with anthropogenically modified sediment dynamics are critical in the context of ecosystem services.[28]

  1. ^ a b c James, L. Allan (2013). "Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment". Anthropocene. 2: 16–26. doi:10.1016/j.ancene.2013.04.001.
  2. ^ Dotterweich, Markus (2008). "The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-term interaction between humans and the environment — A review". Geomorphology. 101 (1–2): 192–208. Bibcode:2008Geomo.101..192D. doi:10.1016/j.geomorph.2008.05.023.
  3. ^ Sternberg, C. W. (1941-04-01). "Some Principles of Accelerated Stream and Valley Sedimentation. Stafford C. Happ , Gordon Rittenhouse , G. C. Dobson". The Journal of Geology. 49 (3): 334–335. doi:10.1086/624968. ISSN 0022-1376.
  4. ^ Wayne., Trimble, Stanley (2008). Man-induced soil erosion on the southern Piedmont, 1700-1970. Goudie, Andrew. (Enhanced ed.). Ankeny, Iowa: Soil and Water Conservation Society. ISBN 9780976943259. OCLC 191697291.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ Knox, James C. (2006). "Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated". Geomorphology. 79 (3–4): 286–310. Bibcode:2006Geomo..79..286K. doi:10.1016/j.geomorph.2006.06.031.
  6. ^ Jackson, C.R., Martin, J.K., Leigh, D.S., West, L.T. (2005). "A southeastern piedmont watershed sediment budget: Evidence for a multi-millennial agricultural legacy". Journal of Soil and Water Conservation. 60: 298–310.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Walter, Robert C.; Merritts, Dorothy J. (2008-01-18). "Natural Streams and the Legacy of Water-Powered Mills". Science. 319 (5861): 299–304. Bibcode:2008Sci...319..299W. doi:10.1126/science.1151716. ISSN 0036-8075. PMID 18202284. S2CID 206509868.
  8. ^ Megahan, W.F., Bohn, C.C. (1989). "Progressive, long-term slope failure following road construction and logging on noncohesive, granitic soils of the Idaho Batholith". Headwaters Hydrology, American Water Resources Association: 501–510.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Douglas, Ian; Spencer, Tom; Greer, Tony; Bidin, Kawi; Sinun, Waidi; Meng, Wong Wai (1992-03-30). "The impact of selective commercial logging on stream hydrology, chemistry and sediment loads in the Ulu Segama rain forest, Sabah, Malaysia". Phil. Trans. R. Soc. Lond. B. 335 (1275): 397–406. doi:10.1098/rstb.1992.0031. ISSN 0962-8436.
  10. ^ Kasprak, Alan; Magilligan, Francis J.; Nislow, Keith H.; Renshaw, Carl E.; Snyder, Noah P.; Dade, W. Brian (2013). "Differentiating the relative importance of land cover change and geomorphic processes on fine sediment sequestration in a logged watershed". Geomorphology. 185: 67–77. Bibcode:2013Geomo.185...67K. doi:10.1016/j.geomorph.2012.12.005.
  11. ^ Gilbert, G.K (1917). "Hydraulic mining debris in the Sierra Nevada" (PDF). U.S. Geological Survey Professional Paper. Professional Paper. 105. doi:10.3133/pp105.
  12. ^ James, A. (1994). "Channel changes wrought by gold mining: northern Sierra Nevada, California. Effects of human-induced changes on hydrologic systems". American Water Resources Association: 629–638.
  13. ^ Palmer, M. A.; Bernhardt, E. S.; Schlesinger, W. H.; Eshleman, K. N.; Foufoula-Georgiou, E.; Hendryx, M. S.; Lemly, A. D.; Likens, G. E.; Loucks, O. L. (2010-01-08). "Mountaintop Mining Consequences". Science. 327 (5962): 148–149. Bibcode:2010Sci...327..148P. doi:10.1126/science.1180543. ISSN 0036-8075. PMID 20056876. S2CID 206522928.
  14. ^ Froehlich, W. (1991). "Sediment production from unmetalled road surfaces. Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation". IAHS Publication. 203: 21–29.
  15. ^ Luce, Charles H.; Black, Thomas A. (1999-08-01). "Sediment production from forest roads in western Oregon". Water Resources Research. 35 (8): 2561–2570. Bibcode:1999WRR....35.2561L. CiteSeerX 10.1.1.364.1533. doi:10.1029/1999wr900135. ISSN 1944-7973. S2CID 15196685.
  16. ^ Wemple, Beverley C.; Swanson, Frederick J.; Jones, Julia A. (2001-02-01). "Forest roads and geomorphic process interactions, Cascade Range, Oregon". Earth Surface Processes and Landforms. 26 (2): 191–204. Bibcode:2001ESPL...26..191W. doi:10.1002/1096-9837(200102)26:2<191::aid-esp175>3.0.co;2-u. ISSN 1096-9837.
  17. ^ Erskine, Wayne D. (2013-03-15). "Soil colour as a tracer of sediment dispersion from erosion of forest roads in Chichester State Forest, NSW, Australia". Hydrological Processes. 27 (6): 933–942. Bibcode:2013HyPr...27..933E. doi:10.1002/hyp.9412. ISSN 1099-1085. S2CID 128936558.
  18. ^ Wolman, M. Gordon (1967). "A Cycle of Sedimentation and Erosion in Urban River Channels". Geografiska Annaler: Series A, Physical Geography. 49 (2/4): 385–395. doi:10.2307/520904. JSTOR 520904.
  19. ^ Bledsoe, Brian P.; Watson, Chester C. (2001-04-01). "Effects of Urbanization on Channel Instability1". JAWRA Journal of the American Water Resources Association. 37 (2): 255–270. Bibcode:2001JAWRA..37..255B. doi:10.1111/j.1752-1688.2001.tb00966.x. ISSN 1752-1688. S2CID 129927981.
  20. ^ Chin, Anne (2006). "Urban transformation of river landscapes in a global context". Geomorphology. 79 (3–4): 460–487. Bibcode:2006Geomo..79..460C. doi:10.1016/j.geomorph.2006.06.033.
  21. ^ Surian, Nicola (1999-11-01). "Channel changes due to river regulation: the case of the Piave River, Italy". Earth Surface Processes and Landforms. 24 (12): 1135–1151. Bibcode:1999ESPL...24.1135S. doi:10.1002/(sici)1096-9837(199911)24:12<1135::aid-esp40>3.0.co;2-f. ISSN 1096-9837.
  22. ^ Nilsson, Christer; Reidy, Catherine A.; Dynesius, Mats; Revenga, Carmen (2005-04-15). "Fragmentation and Flow Regulation of the World's Large River Systems". Science. 308 (5720): 405–408. Bibcode:2005Sci...308..405N. doi:10.1126/science.1107887. ISSN 0036-8075. PMID 15831757. S2CID 34820022.
  23. ^ Syvitski, James P. M.; Vörösmarty, Charles J.; Kettner, Albert J.; Green, Pamela (2005-04-15). "Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean". Science. 308 (5720): 376–380. Bibcode:2005Sci...308..376S. doi:10.1126/science.1109454. ISSN 0036-8075. PMID 15831750. S2CID 11382265.
  24. ^ Lang, Andreas; Bork, Hans-Rudolf; Mäckel, Rüdiger; Preston, Nicholas; Wunderlich, Jürgen; Dikau, Richard (2003-11-01). "Changes in sediment flux and storage within a fluvial system: some examples from the Rhine catchment". Hydrological Processes. 17 (16): 3321–3334. Bibcode:2003HyPr...17.3321L. doi:10.1002/hyp.1389. ISSN 1099-1085. S2CID 128549460.
  25. ^ Bay, Steven M.; Vidal-Dorsch, Doris E.; Schlenk, Daniel; Kelley, Kevin M.; Maruya, Keith A.; Gully, Joseph R. (2012-12-01). "Integrated coastal effects study: Synthesis of findings". Environmental Toxicology and Chemistry. 31 (12): 2711–2722. doi:10.1002/etc.2007. ISSN 1552-8618. PMID 22987611. S2CID 29470135.
  26. ^ Gellis, A.C., Hupp, C.R., Pavich, M.J., Landwehr, J.M., Banks, W.S.L., Hubbard, B.E., Langland, M.J., Ritchie, J.C., Reuter, J.M. (2009). "Sources, transport, and storage of sediment at selected sites in the Chesapeake Bay watershed" (PDF). U.S. Geological Survey Scientific Investigations Report. 5186: 95 pp.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Hupp, Cliff R.; Pierce, Aaron R.; Noe, Gregory B. (2009-06-01). "Floodplain geomorphic processes and environmental impacts of human alteration along Coastal Plain rivers, USA". Wetlands. 29 (2): 413–429. doi:10.1672/08-169.1. ISSN 0277-5212. S2CID 26811741.
  28. ^ Wohl, Ellen (2015). "Legacy effects on sediments in river corridors". Earth-Science Reviews. 147: 30–53. Bibcode:2015ESRv..147...30W. doi:10.1016/j.earscirev.2015.05.001.