Lens space

The lens space L(2;5) consists of the "lens" between the red and yellow walls using a double rotation that aligns the slits. Five "lens" regions are shown in the picture in total.
The double-rotation that identifies the walls of the lens space. In this stereographic view, the double-rotation rotates both around the z-axis and along it.

A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions.

In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and , both of which can be obtained as above, are not counted as they are considered trivial special cases.

The three-dimensional lens spaces were introduced by Heinrich Tietze in 1908. They were the first known examples of 3-manifolds which were not determined by their homology and fundamental group alone, and the simplest examples of closed manifolds whose homeomorphism type is not determined by their homotopy type. J. W. Alexander in 1919 showed that the lens spaces and were not homeomorphic even though they have isomorphic fundamental groups and the same homology, though they do not have the same homotopy type. Other lens spaces (such as and ) have even the same homotopy type (and thus isomorphic fundamental groups and homology), but not the same homeomorphism type; they can thus be seen as the birth of geometric topology of manifolds as distinct from algebraic topology.

There is a complete classification of three-dimensional lens spaces, by fundamental group and Reidemeister torsion.