Lentiviral vectors in gene therapy is a method by which genes can be inserted, modified, or deleted in organisms using lentiviruses.
Lentiviruses are a family of viruses that are responsible for diseases like AIDS, which infect by inserting DNA into their host cells' genome.[1] Many such viruses have been the basis of research using viruses in gene therapy, but the lentivirus is unique in its ability to infect non-dividing cells, and therefore has a wider range of potential applications.[2] Lentiviruses can become endogenous (ERV), integrating their genome into the host germline genome, so that the virus is henceforth inherited by the host's descendants. Scientists use the lentivirus' mechanisms of infection to achieve a desired outcome to gene therapy. Lentiviral vectors in gene therapy have been pioneered by Luigi Naldini.[3][4]
The lentivirus is a retrovirus, meaning it has a single stranded RNA genome with a reverse transcriptase enzyme. Lentiviruses also have a viral envelope with protruding glycoproteins that aid in attachment to the host cell's outer membrane. The virus contains a reverse transcriptase molecule found to perform transcription of the viral genetic material upon entering the cell. Within the viral genome are RNA sequences that code for specific proteins that facilitate the incorporation of the viral sequences into the host cell genome. The "gag" gene codes for the structural components of the viral nucleocapsid proteins: the matrix (MA/p17), the capsid (CA/p24) and the nucleocapsid (NC/p7) proteins. The "pol" domain codes for the reverse transcriptase and integrase enzymes. Lastly, the "env" domain of the viral genome encodes for the glycoproteins and envelope on the surface of the virus.[1][full citation needed]
There are multiple steps involved in the infection and replication of a lentivirus in a host cell. In the first step the virus uses its surface glycoproteins for attachment to the outer surface of a cell. More specifically, lentiviruses attach to the CD4 glycoproteins on the surface of a host's target cell. The viral material is then injected into the host cell's cytoplasm. Within the cytoplasm, the viral reverse transcriptase enzyme performs reverse transcription of the viral RNA genome to create a viral DNA genome. The viral DNA is then sent into the nucleus of the host cell where it is incorporated into the host cell's genome with the help of the viral enzyme integrase. From now on, the host cell starts to transcribe the entire viral RNA and express the structural viral proteins, in particular those that form the viral capsid and the envelope. The lentiviral RNA and the viral proteins then assemble and the newly formed virions leave the host cell when enough are made.[citation needed]
Two methods of gene therapy using lentiviruses have been proposed. In the ex vivo methodology, cells are extracted from a patient and then cultured. A lentiviral vector carrying therapeutic transgenes are then introduced to the culture to infect them. The now modified cells continue to be cultured until they can be infused into the patient. In vivo gene therapy is the sample injection of viral vectors containing transgenes into the patient.[5]