Lewy's example

In the mathematical study of partial differential equations, Lewy's example is a celebrated example, due to Hans Lewy, of a linear partial differential equation with no solutions. It shows that the analog of the Cauchy–Kovalevskaya theorem does not hold in the smooth category.

The original example is not explicit, since it employs the Hahn–Banach theorem, but there since have been various explicit examples of the same nature found by Howard Jacobowitz.[1]

The Malgrange–Ehrenpreis theorem states (roughly) that linear partial differential equations with constant coefficients always have at least one solution; Lewy's example shows that this result cannot be extended to linear partial differential equations with polynomial coefficients.

  1. ^ Jacobowitz, Howard (1988), Cardoso, Fernando; de Figueiredo, Djairo G.; Iório, Rafael; Lopes, Orlando (eds.), "Systems of homogeneous partial differential equations with few solutions", Partial Differential Equations, vol. 1324, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 127–136, doi:10.1007/bfb0100788, ISBN 978-3-540-50111-4