Lie algebroid

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

Lie algebroids play a similar same role in the theory of Lie groupoids that Lie algebras play in the theory of Lie groups: reducing global problems to infinitesimal ones. Indeed, any Lie groupoid gives rise to a Lie algebroid, which is the vertical bundle of the source map restricted at the units. However, unlike Lie algebras, not every Lie algebroid arises from a Lie groupoid.

Lie algebroids were introduced in 1967 by Jean Pradines.[1]

  1. ^ Pradines, Jean (1967). "Théorie de Lie pour les groupoïdes dif́férentiables. Calcul différentiel dans la caté́gorie des groupoïdes infinitésimaux". C. R. Acad. Sci. Paris (in French). 264: 245–248.