Lifting-line theory

The Lanchester-Prandtl lifting-line theory[1] is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing from the wing's geometry.[2] The theory was expressed independently[3] by Frederick W. Lanchester in 1907,[4] and by Ludwig Prandtl in 1918–1919[5] after working with Albert Betz and Max Munk. In this model, the vortex bound to the wing develops along the whole wingspan because it is shed as a vortex-sheet from the trailing edge, rather than just as a single vortex from the wing-tips.[6][7]

  1. ^ Anderson, John D. (2001), Fundamentals of Aerodynamics, p. 360. McGraw-Hill, Boston. ISBN 0-07-237335-0.
  2. ^ Houghton, E. L.; Carpenter, P. W. (2003). Butterworth Heinmann (ed.). Aerodynamics for Engineering Students (5th ed.). ISBN 0-7506-5111-3.
  3. ^ von Kármán, Theodore (2004) [1954]. Aerodynamics: Selected Topics in the Light of their Historical Development. Dover. ISBN 0-486-43485-0.
  4. ^ Lanchester, Frederick W. (1907). Constable (ed.). Aerodynamics.
  5. ^ Prandtl, Ludwig (1918). Königliche Gesellschaft der Wissenschaften zu Göttingen (ed.). Tragflügeltheorie.
  6. ^ Abbott, Ira H., and Von Doenhoff, Albert E., Theory of Wing Sections, Section 1.4.
  7. ^ Clancy, L. J., Aerodynamics, Section 8.11.