Ligation (molecular biology)

A sticky end ligation

Ligation is the joining of two nucleotides, or two nucleic acid fragments, into a single polymeric chain through the action of an enzyme known as a ligase. The reaction involves the formation of a phosphodiester bond between the 3'-hydroxyl terminus of one nucleotide and the 5'-phosphoryl terminus of another nucleotide, which results in the two nucleotides being linked consecutively on a single strand. Ligation works in fundamentally the same way for both DNA and RNA. A cofactor is generally involved in the reaction, usually ATP or NAD+. Eukaryotic ligases belong to the ATP type, while the NAD+ type are found in bacteria (e.g. E. coli).[1]

Ligation occurs naturally as part of numerous cellular processes, including DNA replication, transcription, splicing, and recombination, and is also an essential laboratory procedure in molecular cloning, whereby DNA fragments are joined to create recombinant DNA molecules (such as when a foreign DNA fragment is inserted into a plasmid). The discovery of DNA ligase dates back to 1967 and was an important event in the field of molecular biology.[1] Ligation in the laboratory is normally performed using T4 DNA ligase. It is broadly used in vitro due to its capability of joining sticky-ended fragments as well as blunt-ended fragments.[2] However, procedures for ligation without the use of standard DNA ligase are also popular. Human DNA ligase abnormalities have been linked to pathological disorders characterized by immunodeficiency, radiation sensitivity, and developmental problems.[3]

  1. ^ a b Shuman S (June 2009). "DNA ligases: progress and prospects". The Journal of Biological Chemistry. 284 (26): 17365–17369. doi:10.1074/jbc.R900017200. PMC 2719376. PMID 19329793.
  2. ^ Su T, Liu F, Chang Y, Guo Q, Wang J, Wang Q, Qi Q (June 2019). "The phage T4 DNA ligase mediates bacterial chromosome DSBs repair as single component non-homologous end joining". Synthetic and Systems Biotechnology. 4 (2): 107–112. doi:10.1016/j.synbio.2019.04.001. PMC 6525309. PMID 31193309.
  3. ^ Tomkinson AE, Naila T, Khattri Bhandari S (February 2020). "Altered DNA ligase activity in human disease". Mutagenesis. 35 (1): 51–60. doi:10.1093/mutage/gez026. PMC 7317150. PMID 31630206.