In mathematics, a topological space is said to be limit point compact[1][2] or weakly countably compact[2] if every infinite subset of has a limit point in This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.
- ^ The terminology "limit point compact" appears in a topology textbook by James Munkres where he says that historically such spaces had been called just "compact" and what we now call compact spaces were called "bicompact". There was then a shift in terminology with bicompact spaces being called just "compact" and no generally accepted name for the first concept, some calling it "Fréchet compactness", others the "Bolzano-Weierstrass property". He says he invented the term "limit point compact" to have something at least descriptive of the property. Munkres, p. 178-179.
- ^ a b Steen & Seebach, p. 19