Linear network coding

In computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations.

Linear network coding may be used to improve a network's throughput, efficiency, and scalability, as well as reducing attacks and eavesdropping. The nodes of a network take several packets and combine for transmission. This process may be used to attain the maximum possible information flow in a network.

It has been proven that, theoretically, linear coding is enough to achieve the upper bound in multicast problems with one source.[1] However linear coding is not sufficient in general; even for more general versions of linearity such as convolutional coding and filter-bank coding.[2] Finding optimal coding solutions for general network problems with arbitrary demands is a hard problem, which can be NP-hard[3][4] and even undecidable.[5][6]

  1. ^ S. Li, R. Yeung, and N. Cai, "Linear Network Coding"(PDF), in IEEE Transactions on Information Theory, Vol 49, No. 2, pp. 371–381, 2003
  2. ^ R. Dougherty, C. Freiling, and K. Zeger, "Insufficiency of Linear Coding in Network Information Flow" (PDF), in IEEE Transactions on Information Theory, Vol. 51, No. 8, pp. 2745-2759, August 2005 ( erratum)
  3. ^ Rasala Lehman, A.; Lehman, E. (2004). Complexity classification of network information flow problems. 15th ACM-SIAM SODA. pp. 142–150.
  4. ^ Langberg, M.; Sprintson, A.; Bruck, J. (2006). "The encoding complexity of network coding". IEEE Transactions on Information Theory. 52 (6): 2386–2397. doi:10.1109/TIT.2006.874434. S2CID 1414385.
  5. ^ Li, C. T. (2023). "Undecidability of Network Coding, Conditional Information Inequalities, and Conditional Independence Implication". IEEE Transactions on Information Theory. 69 (6): 1. arXiv:2205.11461. doi:10.1109/TIT.2023.3247570. S2CID 248986512.
  6. ^ Kühne, L.; Yashfe, G. (2022). "Representability of Matroids by c-Arrangements is Undecidable". Israel Journal of Mathematics. 252: 95–147. arXiv:1912.06123. doi:10.1007/s11856-022-2345-z. S2CID 209324252.