Alternative names | LOTIS |
---|---|
Location(s) | California, Pacific States Region |
First light | October 1996 |
Telescope style | optical telescope robotic telescope |
Number of telescopes | 4 |
Diameter | 11 cm (4.3 in) |
The Livermore Optical Transient Imaging System, or LOTIS, is an automated telescope designed to slew very rapidly to the location of gamma-ray bursts (GRBs), to enable the simultaneous measurement of optical counterparts.[1] Since GRBs can occur anywhere in the sky, are often poorly localized, and fade very quickly, this implies very rapid slewing (less than 10 sec) and a wide field of view (greater than 15 degrees). To achieve the needed response time, LOTIS was fully automated and connected via Internet socket to the Gamma-ray Burst Coordinates Network. This network analyzes telemetry from satellite such as HETE-2 and Swift Gamma-Ray Burst Mission and delivers GRB coordinate information in real-time. The optics were built from 4 commercial tele-photo lenses of 11 cm aperture, with custom 2048 X 2048 CCD cameras, and could view a 17.6 X 17.6 degree field.
LOTIS started routine operation in October 1996, with a limiting magnitude Mv≈11.5 . In March 1998 it was upgraded with cooled cameras, resulting in a limiting sensitivity of Mv≈14.[2] It was in operation until at least 2001, but never successfully detected the optical counterpart of a GRB, though it did set upper limits. By 2001, the 4 cameras had been co-aligned and two of them had added filters.[3] In the idle time between GRB triggers, LOTIS systematically surveyed the entire available sky every night for new optical transients. LOTIS was succeeded by another robotic telescope with a larger mirror but smaller field of view, called Super-LOTIS.
{{cite conference}}
: CS1 maint: multiple names: authors list (link)
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
{{cite journal}}
: CS1 maint: multiple names: authors list (link)