Part of a series of articles about |
Quantum mechanics |
---|
In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the principle of locality. These models attempt to account for the probabilistic features of quantum mechanics via the mechanism of underlying, but inaccessible variables, with the additional requirement that distant events be statistically independent.
The mathematical implications of a local hidden-variable theory with regards to quantum entanglement were explored by physicist John Stewart Bell, who in 1964 proved that broad classes of local hidden-variable theories cannot reproduce the correlations between measurement outcomes that quantum mechanics predicts, a result since confirmed by a range of detailed Bell test experiments.[1]