Low molecular-mass organic gelators (LMOGs) are the monomeric sub-unit which form self-assembled fibrillar networks (SAFINs) that entrap solvent between the strands.[1] SAFINs arise from the formation of strong non-covalent interactions between LMOG monomeric sub-units. As SAFINs are forming, the long fibers become intertwined and trap solvent molecules. Once solvent molecules are entrapped within the network, they are immobilized by surface tension effects. The stability of a gel is dependent on the equilibrium between the assembled network and the dissolved gelators. One characteristic of an LMOG, that demonstrates its stability, is its ability to contain an organic solvent at the boiling point of that solvent due to extensive solvent-fibrillar interactions.[2] Gels self-assemble through non-covalent interactions such as π-stacking, hydrogen-bonding, or Van der Waals interactions to form volume-filling 3D networks. Self-assembly is key to gel formation and dependent upon reversible bond formation. The propensity of a low molecular weight molecule to form LMOGs is classified by its Minimum Gelation Concentration (MGC). The MGC is the lowest possible gelator concentration needed to form a stable gel. A lower MGC is desired to minimize the amount of gelator material needed to form gels. Super gelators have a MGC of less than 1 wt%.