In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model[1]: 495 ) is a multi-server queueing model.[2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed.[3] It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.