MALDI imaging

Mouse kidney: (a) MALDI spectra from the tissue. (b) H&E stained tissue. N-glycans at m/z = 1996.7 (c) is located in the cortex and medulla while m/z = 2158.7 (d) is in the cortex, (e) An overlay image of these two masses, (f) untreated control tissue.[1]

MALDI mass spectrometry imaging (MALDI-MSI) is the use of matrix-assisted laser desorption ionization as a mass spectrometry imaging[2] technique in which the sample, often a thin tissue section, is moved in two dimensions while the mass spectrum is recorded.[3] Advantages, like measuring the distribution of a large amount of analytes at one time without destroying the sample, make it a useful method in tissue-based study.[4]

  1. ^ Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS, et al. (2014). "MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays". PLOS ONE. 9 (9): e106255. Bibcode:2014PLoSO...9j6255P. doi:10.1371/journal.pone.0106255. PMC 4153616. PMID 25184632.
  2. ^ McDonnell LA, Heeren RM (2007). "Imaging mass spectrometry". Mass Spectrometry Reviews. 26 (4): 606–643. Bibcode:2007MSRv...26..606M. doi:10.1002/mas.20124. hdl:1874/26394. PMID 17471576.
  3. ^ Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM (November 2006). "New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry". Journal of Proteome Research. 5 (11): 2889–2900. doi:10.1021/pr060346u. PMID 17081040.
  4. ^ Walch A, Rauser S, Deininger SO, Höfler H (September 2008). "MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology". Histochemistry and Cell Biology. 130 (3): 421–434. doi:10.1007/s00418-008-0469-9. PMC 2522327. PMID 18618129.