Macronarians Temporal range: Middle Jurassic–Late Cretaceous,
| |
---|---|
Seven macronarian sauropods (top left to bottom right): Argentinosaurus, Camarasaurus lentus, Opisthocoelicaudia, Europasaurus, Qiaowanlong, Huanghetitan (foreground) with Daxiatitan (background) | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Dinosauria |
Clade: | Saurischia |
Clade: | †Sauropodomorpha |
Clade: | †Sauropoda |
Clade: | †Neosauropoda |
Clade: | †Macronaria Wilson & Sereno, 1998 |
Clades and subclades | |
|
Macronaria is a clade of sauropod dinosaurs. Macronarians are named after the large diameter of the nasal opening of their skull, known as the external naris, which exceeded the size of the orbit, the skull opening where the eye is located (hence macro- meaning large, and –naria meaning nose). Fossil evidence suggests that macronarian dinosaurs lived from the Middle Jurassic (Bathonian)[5] through the Late Cretaceous (Maastrichtian). Macronarians have been found globally, including discoveries in Argentina, the United States, Portugal, China, and Tanzania. Like other sauropods, they are known to have inhabited primarily terrestrial areas, and little evidence exists to suggest that they spent much time in coastal environments. Macronarians are diagnosed through their distinct characters on their skulls, as well as appendicular and vertebral characters. Macronaria is composed of several subclades and families notably including Camarasauridae and Titanosauriformes, among several others. Titanosauriforms are particularly well known for being some of the largest terrestrial animals to ever exist.
Macronaria was described by Wilson and Sereno who proposed the new subdivisions among the clade Neosauropoda. Previously, this clade was thought to have Brachiosaurus and Camarasauridae forming one sister group, and Titanosauroidea and Diplodocoidea forming another. This proposed shift with Macronaria placed Diplodocoidea as an outgroup to the new clade Macronaria, under which all other neosauropods would fall.