Magnetic skyrmion

Fig. 1 The vector field of two-dimensional magnetic skyrmions: a) a hedgehog skyrmion and b) a spiral skyrmion.

In physics, magnetic skyrmions (occasionally described as 'vortices,'[1] or 'vortex-like'[2] configurations) are statically stable solitons which have been predicted theoretically[1][3][4] and observed experimentally[5][6][7] in condensed matter systems. Magnetic skyrmions can be formed in magnetic materials in their 'bulk' such as in manganese monosilicide (MnSi),[6] or in magnetic thin films.[1][2][8][9] They can be achiral, or chiral (Fig. 1 a and b are both chiral skyrmions) in nature, and may exist both as dynamic excitations[10] or stable or metastable states.[5] Although the broad lines defining magnetic skyrmions have been established de facto, there exist a variety of interpretations with subtle differences.

Most descriptions include the notion of topology – a categorization of shapes and the way in which an object is laid out in space – using a continuous-field approximation as defined in micromagnetics. Descriptions generally specify a non-zero, integer value of the topological index,[11] (not to be confused with the chemistry meaning of 'topological index'). This value is sometimes also referred to as the winding number,[12] the topological charge[11] (although it is unrelated to 'charge' in the electrical sense), the topological quantum number[13] (although it is unrelated to quantum mechanics or quantum mechanical phenomena, notwithstanding the quantization of the index values), or more loosely as the “skyrmion number.”[11] The topological index of the field can be described mathematically as[11]

(1)

where is the topological index, is the unit vector in the direction of the local magnetization within the magnetic thin, ultra-thin or bulk film, and the integral is taken over a two-dimensional space. (A generalization to a three-dimensional space is possible).[14]

Passing to spherical coordinates for the space ( ) and for the magnetisation ( ), one can understand the meaning of the skyrmion number. In skyrmion configurations the spatial dependence of the magnetisation can be simplified by setting the perpendicular magnetic variable independent of the in-plane angle () and the in-plane magnetic variable independent of the radius ( ). Then the topological skyrmion number reads:

(2)

where p describes the magnetisation direction in the origin (p=1 (−1) for ) and W is the winding number. Considering the same uniform magnetisation, i.e. the same p value, the winding number allows to define the skyrmion () with a positive winding number and the antiskyrmion with a negative winding number and thus a topological charge opposite to the one of the skyrmion.

Comparison of skyrmion and antiskyrmion. a, b Néel-like skyrmion and antiskyrmion schematically shown in c and d mapped onto a sphere. The color code represents the out-of-plane component of the spins via the brightness, with bright (dark) spins pointing up (down), and their rotational sense in radial direction going from inside out changing from red (clockwise) via gray (vanishing rotational sense) to green (counter-clockwise). e, f Cross sections of the spin textures along the four highlighted directions shown in c and d[15]

What this equation describes physically is a configuration in which the spins in a magnetic film are all aligned orthonormal to the plane of the film, with the exception of those in one specific region, where the spins progressively turn over to an orientation that is perpendicular to the plane of the film but anti-parallel to those in the rest of the plane. Assuming 2D isotropy, the free energy of such a configuration is minimized by relaxation towards a state exhibiting circular symmetry, resulting in the configuration illustrated schematically (for a two dimensional skyrmion) in figure 1. In one dimension, the distinction between the progression of magnetization in a 'skyrmionic' pair of domain walls, and the progression of magnetization in a topologically trivial pair of magnetic domain walls, is illustrated in figure 2. Considering this one dimensional case is equivalent to considering a horizontal cut across the diameter of a 2-dimensional hedgehog skyrmion (fig. 1(a)) and looking at the progression of the local spin orientations.

Fig. 2 Comparison of a pair of magnetic domain walls with constant angular progression (1D skyrmion), and a pair of magnetic domain walls with two opposite angular progressions (topologically trivial).

It is worth observing that there are two different configurations which satisfy the topological index criterion stated above. The distinction between these can be made clear by considering a horizontal cut across both of the skyrmions illustrated in figure 1, and looking at the progression of the local spin orientations. In the case of fig. 1(a) the progression of magnetization across the diameter is cycloidal. This type of skyrmion is known as a hedgehog skyrmion. In the case of fig. 1(b), the progression of magnetization is helical, giving rise to what is often called a vortex skyrmion.

  1. ^ a b c Bogdanov AN, Rössler UK (July 2001). "Chiral symmetry breaking in magnetic thin films and multilayers". Physical Review Letters. 87 (3): 037203. Bibcode:2001PhRvL..87c7203B. doi:10.1103/physrevlett.87.037203. PMID 11461587.
  2. ^ a b Iwasaki J, Mochizuki M, Nagaosa N (October 2013). "Current-induced skyrmion dynamics in constricted geometries". Nature Nanotechnology. 8 (10): 742–7. arXiv:1310.1655. Bibcode:2013NatNa...8..742I. doi:10.1038/nnano.2013.176. PMID 24013132. S2CID 780496.
  3. ^ Rössler UK, Bogdanov AN, Pfleiderer C (August 2006). "Spontaneous skyrmion ground states in magnetic metals". Nature. 442 (7104): 797–801. arXiv:cond-mat/0603103. Bibcode:2006Natur.442..797R. doi:10.1038/nature05056. PMID 16915285. S2CID 4389730.
  4. ^ Dupé B, Hoffmann M, Paillard C, Heinze S (June 2014). "Tailoring magnetic skyrmions in ultra-thin transition metal films". Nature Communications. 5: 4030. Bibcode:2014NatCo...5.4030D. doi:10.1038/ncomms5030. PMID 24893652.
  5. ^ a b Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, et al. (August 2013). "Writing and deleting single magnetic skyrmions". Science. 341 (6146): 636–9. Bibcode:2013Sci...341..636R. doi:10.1126/science.1240573. PMID 23929977. S2CID 27222755.
  6. ^ a b Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, et al. (February 2009). "Skyrmion lattice in a chiral magnet". Science. 323 (5916): 915–9. arXiv:0902.1968. Bibcode:2009Sci...323..915M. doi:10.1126/science.1166767. PMID 19213914. S2CID 53513118.
  7. ^ Hsu PJ, Kubetzka A, Finco A, Romming N, von Bergmann K, Wiesendanger R (February 2017). "Electric-field-driven switching of individual magnetic skyrmions". Nature Nanotechnology. 12 (2): 123–126. arXiv:1601.02935. Bibcode:2017NatNa..12..123H. doi:10.1038/nnano.2016.234. PMID 27819694. S2CID 5921700.
  8. ^ Fert A, Cros V, Sampaio J (March 2013). "Skyrmions on the track". Nature Nanotechnology. 8 (3): 152–6. Bibcode:2013NatNa...8..152F. doi:10.1038/nnano.2013.29. PMID 23459548.
  9. ^ Husain S, Sisodia N, Chaurasiya AK, Kumar A, Singh JP, Yadav BS, et al. (January 2019). "Co2FeAl Heusler Alloy Ultrathin Film Heterostructures". Scientific Reports. 9 (1): 1085. doi:10.1038/s41598-018-35832-3. PMC 6355792. PMID 30705297.
  10. ^ Sondhi SL, Karlhede A, Kivelson SA, Rezayi EH (June 1993). "Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies". Physical Review B. 47 (24): 16419–16426. Bibcode:1993PhRvB..4716419S. doi:10.1103/physrevb.47.16419. PMID 10006073.
  11. ^ a b c d Heinze S, Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S (2011). "Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions". Nature Physics. 7 (9): 713–718. Bibcode:2011NatPh...7..713H. doi:10.1038/nphys2045.
  12. ^ von Bergmann K, Kubetzka A, Pietzsch O, Wiesendanger R (October 2014). "Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy". Journal of Physics: Condensed Matter. 26 (39): 394002. Bibcode:2014JPCM...26M4002V. doi:10.1088/0953-8984/26/39/394002. PMID 25214495. S2CID 38343842.
  13. ^ Finazzi M, Savoini M, Khorsand AR, Tsukamoto A, Itoh A, Duò L, et al. (April 2013). "Laser-induced magnetic nanostructures with tunable topological properties". Physical Review Letters. 110 (17): 177205. arXiv:1304.1754. Bibcode:2013PhRvL.110q7205F. doi:10.1103/physrevlett.110.177205. PMID 23679767. S2CID 21660154.
  14. ^ Mishra, Kishan; Srikant, Lone (2023). "Magnetic Skyrmion: From Fundamental Physics to Pioneering Applications". arXiv. 895. arXiv:2308.11811v1.
  15. ^ Hoffmann M, Zimmermann B, Müller GP, Schürhoff D, Kiselev NS, Melcher C, Blügel S (August 2017). "Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions". Nature Communications. 8 (1): 308. arXiv:1702.07573. Bibcode:2017NatCo...8..308H. doi:10.1038/s41467-017-00313-0. PMC 5566362. PMID 28827700.