Magnoflorine

Magnoflorine
Names
IUPAC name
1,11-Dihydroxy-2,10-dimethoxy-6-methylaporphin-6-ium
Systematic IUPAC name
(6aS)-1,11-Dihydroxy-2,10-dimethoxy-6,6-dimethyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinolin-6-ium
Other names
Magnoflorine; Thalictrin; Escholin; Escholine; Thalictrine
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.208.671 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C20H23NO4/c1-21(2)8-7-12-10-15(25-4)20(23)18-16(12)13(21)9-11-5-6-14(24-3)19(22)17(11)18/h5-6,10,13H,7-9H2,1-4H3,(H-,22,23)/p+1/t13-/m0/s1
    Key: YLRXAIKMLINXQY-ZDUSSCGKSA-O
  • C[N+]1(CCC2=CC(=C(C3=C2[C@@H]1CC4=C3C(=C(C=C4)OC)O)O)OC)C
Properties
C20H24NO4+
Molar mass 342.41 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

(S)-Magnoflorine is a quaternary benzylisoquinoline alkaloid (BIA) of the aporphine structural subgroup which has been isolated from various species of the family Menispermaceae, such as Pachygone ovata,[1] Sinomenium acutum,[2] and Cissampelos pareira.[3]  

It was identified among the verified anti-inflammatory components in an extract of Sinomenii caulis[4] and has been proposed to have other potential physiological effects, such as sedative and anxiolytic,[2] reduction of erythrocyte hemolysis,[5] antifungal activity,[6] improvement of LPS-induced acute lung injury,[7] and protection against muscle atrophy.[8] Furthermore, magnoflorine has been identified to be an inhibitor of NF-κB activation and to be an agonist at the β2 -adrenergic receptor.[9]

(S)-Magnoflorine is metabolically derived from (S)-reticuline, a pivotal intermediate in the biosynthesis of numerous BIA structural subgroups, through two enzymatic steps: first, (S)-corytuberine synthase/CYP80G2 to (S)-corytuberine, and secondly, (S)-corytuberine-N-methyltransferase to (S)-magnoflorine.[10][11]

  1. ^ El-Kawi, M. A.; Slatkin, D. J.; Schiff, P. L.; Dasgupta, S; Chattopadhyay, S. K.; Ray, A. B. (1984). "Additional alkaloids of Pachygone ovata". J Nat Prod. 47 (3): 459–64. doi:10.1021/np50033a010. PMID 6481360.
  2. ^ a b de la Peña, June Bryan I.; Lee, Hye Lim; Yoon, Seo Young; Kim, Gun Hee; Lee, Yong Soo; Cheong, Jae Hoon (Oct 2013). "The involvement of magnoflorine in the sedative and anxiolytic effects of Sinomeni Caulis et Rhizoma in mice". J Nat Med. 67 (4): 814–21. doi:10.1007/s11418-013-0754-3. PMID 23456265. S2CID 14170353.
  3. ^ Bala, M; Kumar, S; Pratap, K; Verma, P. K.; Padwad, Y; Singh, B (2019). "Bioactive isoquinoline alkaloids from Cissampelos pareira". Nat Prod Res. 33 (5): 622–627. doi:10.1080/14786419.2017.1402319. PMID 29126362. S2CID 9548987.
  4. ^ Wang, Lan-Jin; Jiang, Zhen-Meng; Xiao, Ping-Ting; Sun, Jian-Bo; Bi, Zhi-Ming; Liu, E-Hu (2019). "Identification of anti-inflammatory components in Sinomenii Caulis based on spectrum-effect relationship and chemometric methods". J Pharm Biomed Anal. 167: 38–48. doi:10.1016/j.jpba.2019.01.047. PMID 30738242. S2CID 73436808.
  5. ^ Sakumoto, Hitoshi; Yokota, Yumiko; Ishibashi, Gakushi; Maeda, Shouta; Hoshi, Chihiro; Takano, Haruyo; Kobayashi, Miki; Yahagi, Tadahiro; Ijiri, Soichiro (2015). "Sinomenine and magnoflorine, major constituents of Sinomeni Caulis et Rhizoma, show potent protective effects against membrane damage induced by lysophosphatidylcholine in rat erythrocytes". J Nat Med. 69 (3): 441–8. doi:10.1007/s11418-015-0907-7. PMID 25840917. S2CID 13871437.
  6. ^ Kim, Jaegoo; Ha Quang Bao, Thinh; Shin, Yu-Kyong; Kim, Ki-Young (2018). "Antifungal activity of magnoflorine against Candida strains". World J Microbiol Biotechnol. 34 (11): 167. doi:10.1007/s11274-018-2549-x. PMID 30382403. S2CID 53195579.
  7. ^ Guo, Shuai; Jiang, Kangfeng; Wu, Haichong; Yang, Chao; Yang, Yaping; Yang, Jing; Zhao, Gan; Deng, Ganzhen (2018). "Magnoflorine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Suppressing NF-κB and MAPK Activation". Front. Pharmacol. 9: 982. doi:10.3389/fphar.2018.00982. PMC 6125611. PMID 30214410.
  8. ^ Lee, Heyjin; Tuong, Le Thi; Jeong, Ji Hye; Lee, Sang-Jin; Bae, Gyu-Un; Ryu, Jae-Ha (2017). "Isoquinoline alkaloids from Coptis japonica stimulate the myoblast differentiation via p38 MAP-kinase and Akt signaling pathway". Bioorg Med Chem Lett. 27 (6): 1401–1404. doi:10.1016/j.bmcl.2017.02.003. PMID 28228365.
  9. ^ Sun, Dan; Han, Yanqi; Wang, Weiya; Wang, Zengyong; Ma, Xiaoyao; Hou, Yuanyuan; Bai, Gang (2016). "Screening and identification of Caulis Sinomenii bioactive ingredients with dual-target NF-κB inhibition and β2-AR agonizing activities". Biomed Chromatogr. 30 (11): 1843–1853. doi:10.1002/bmc.3761. PMID 27187693.
  10. ^ Morris, Jeremy S; Facchini, Peter J (2016). "Isolation and Characterization of Reticuline N-Methyltransferase Involved in Biosynthesis of the Aporphine Alkaloid Magnoflorine in Opium Poppy". J Biol Chem. 291 (45): 23416–23427. doi:10.1074/jbc.M116.750893. PMC 5095398. PMID 27634038.
  11. ^ He, Si-Mei; Liang, Yan-Li; Cong, Kun; Chen, Geng; Zhao, Xia; Zhao, Qi-Ming; Zhang, Jia-Jin; Wang, Xiao; Dong, Yang (2018). "Identification and Characterization of Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in Coptis Species". Front Plant Sci. 9: 731. doi:10.3389/fpls.2018.00731. PMC 5995273. PMID 29915609.