Steels |
---|
Phases |
Microstructures |
Classes |
Other iron-based materials |
Maraging steels (a portmanteau of "martensitic" and "aging") are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel.[1] Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates.[1]
Original development by Clarence Gieger Bieber of Inco in the late 1950s was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made.[2] A rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.[3]
The common, non-stainless grades contain 17–19 wt% nickel, 8–12 wt% cobalt, 3–5 wt% molybdenum and 0.2–1.6 wt% titanium.[4] Addition of chromium produces stainless grades resistant to corrosion. This also indirectly increases hardenability as they require less nickel; high-chromium, high-nickel steels are generally austenitic and unable to transform to martensite when heat treated, while lower-nickel steels can transform to martensite. Alternative variants of nickel-reduced maraging steels are based on alloys of iron and manganese plus minor additions of aluminium, nickel and titanium where compositions between Fe-9wt% Mn to Fe-15wt% Mn have been used.[5] The manganese has a similar effect as nickel, i.e. it stabilizes the austenite phase. Hence, depending on their manganese content, Fe-Mn maraging steels can be fully martensitic after quenching them from the high temperature austenite phase or they can contain retained austenite.[6] The latter effect enables the design of maraging-TRIP steels where TRIP stands for Transformation-Induced-Plasticity.[7]