Marine current power

Marine currents can carry large amounts of water, largely driven by the tides, which are a consequence of the gravitational effects of the planetary motion of the Earth, the Moon and the Sun. Augmented flow velocities can be found where the underwater topography in straits between islands and the mainland or in shallows around headlands plays a major role in enhancing the flow velocities, resulting in appreciable kinetic energy.[1] The Sun acts as the primary driving force, causing winds and temperature differences. Because there are only small fluctuations in current speed and stream location with minimal changes in direction, ocean currents may be suitable locations for deploying energy extraction devices such as turbines.[2] Other effects such as regional differences in temperature and salinity and the Coriolis effect due to the rotation of the earth are also major influences. The kinetic energy of marine currents can be converted in much the same way that a wind turbine extracts energy from the wind, using various types of open-flow rotors.[3]

  1. ^ Bahaj, A. S. (2013-01-14). "Marine current energy conversion: the dawn of a new era in electricity production". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 371 (1985): 20120500. Bibcode:2013RSPTA.37120500B. doi:10.1098/rsta.2012.0500. ISSN 1364-503X. PMID 23319714.
  2. ^ Saad, Fouad (2016). The Shock of Energy Transition. Partridge Publishing Singapore. ISBN 9781482864953.
  3. ^ Ponta, F.L.; P.M. Jacovkis (April 2008). "Marine-current power generation by diffuser-augmented floating hydro-turbines". Renewable Energy. 33 (4): 665–673. doi:10.1016/j.renene.2007.04.008.