Maskless lithography (MPL) is a photomask-less photolithography-like technology used to project or focal-spot write the image pattern onto a chemical resist-coated substrate (e.g. wafer) by means of UV radiation or electron beam.[1]
In microlithography, typically UV radiation casts an image of a time constant mask onto a photosensitive emulsion (or photoresist).[2] Traditionally, mask aligners, steppers, scanners, and other kinds of non-optical techniques are used for high speed microfabrication of microstructures, but in case of MPL, some of these become redundant.
Maskless lithography has two approaches to project a pattern: rasterized and vectorized. In the first one it utilizes generation of a time-variant intermittent image on an electronically modifiable (virtual) mask that is projected with known means (also known as laser direct imaging and other synonyms). In the vectored approach, direct writing is achieved by radiation that is focused to a narrow beam that is scanned in vector form across the resist. The beam is then used to directly write the image into the photoresist, one or more pixels at a time. Also combinations of the two approaches are known, and it is not limited to optical radiation, but also extends into the UV, includes electron-beams and also mechanical or thermal ablation via MEMS devices.