Intelligence cycle management |
---|
Intelligence collection management |
MASINT |
Materials MASINT is one of the six major disciplines generally accepted to make up the field of Measurement and Signature Intelligence (MASINT), with due regard that the MASINT subdisciplines may overlap, and MASINT, in turn, is complementary to more traditional intelligence collection and analysis disciplines such as SIGINT and IMINT. MASINT encompasses intelligence gathering activities that bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).
According to the United States Department of Defense, MASINT is technically derived intelligence (excluding traditional imagery IMINT and signals intelligence SIGINT) that – when collected, processed, and analyzed by dedicated MASINT systems – results in intelligence that detects, tracks, identifies, or describes the signatures (distinctive characteristics) of fixed or dynamic target sources. MASINT was recognized as a formal intelligence discipline in 1986.[1] Materials intelligence is one of the major MASINT disciplines.[2] As with many branches of MASINT, specific techniques may overlap with the six major conceptual disciplines of MASINT defined by the Center for MASINT Studies and Research, which divides MASINT into Electro-optical, Nuclear, Geophysical, Radar, Materials, and Radiofrequency disciplines.[3]
Materials MASINT involves the collection, processing, and analysis of gas, liquid, or solid samples, is critical in defense against chemical, biological, and radiological threats (CBR), or nuclear-biological-chemical (NBC), as well as more general safety and public health activities. It should be distinguished from the discipline of technical intelligence, which does overlap this discipline. To understand the difference, consider that there are multiple ways to understand the propellant of a new enemy weapon. A technical intelligence analyst would work with a captured example of the weapon, or at least pieces of it, to come to that understanding. The technical intelligence analyst might eventually fire the weapon under controlled circumstances.
In contrast, a materials MASINT analyst would collect information on the weapon principally through remote sensing directed on the enemy's use of the weapon. The materials MASINT analysis may learn more about the way the enemy actually uses the weapon, while the technical intelligence analyst may understand more about the manufacture, maintainability, and skills required to use the weapon.