In queueing theory, a discipline within the mathematical theory of probability, mean value analysis (MVA) is a recursive technique for computing expected queue lengths, waiting time at queueing nodes and throughput in equilibrium for a closed separable system of queues. The first approximate techniques were published independently by Schweitzer[1] and Bard,[2][3] followed later by an exact version by Lavenberg and Reiser published in 1980.[4][5]
It is based on the arrival theorem, which states that when one customer in an M-customer closed system arrives at a service facility he/she observes the rest of the system to be in the equilibrium state for a system with M − 1 customers.
Schweitzer
was invoked but never defined (see the help page).