Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change. A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase (e.g. water vapour) to pass through the membrane's pores.[1] The driving force of the process is a partial vapour pressure difference commonly triggered by a temperature difference.[2][3]
^Warsinger, David M.; Servi, Amelia; Connors, Grace B.; Lienhard V, John H. (2017). "Reversing membrane wetting in membrane distillation: comparing dryout to backwashing with pressurized air". Environmental Science: Water Research & Technology. 3 (5): 930–939. doi:10.1039/C7EW00085E. hdl:1721.1/118392.
^Deshmukh, Akshay; Boo, Chanhee; Karanikola, Vasiliki; Lin, Shihong; Straub, Anthony P.; Tong, Tiezheng; Warsinger, David M.; Elimelech, Menachem (2018). "Membrane distillation at the water-energy nexus: limits, opportunities, and challenges". Energy & Environmental Science. 11 (5): 1177–1196. doi:10.1039/c8ee00291f. ISSN1754-5692.