Methane clathrate (CH4·5.75H2O) or (4CH4·23H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice.[1][2][3][4][5][6] Originally thought to occur only in the outer regions of the Solar System, where temperatures are low and water ice is common, significant deposits of methane clathrate have been found under sediments on the ocean floors of the Earth (approx. 1100m below the sea level).[7] Methane hydrate is formed when hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in oceans.
Methane clathrates are common constituents of the shallow marine geosphere and they occur in deep sedimentary structures and form outcrops on the ocean floor. Methane hydrates are believed to form by the precipitation or crystallisation of methane migrating from deep along geological faults. Precipitation occurs when the methane comes in contact with water within the sea bed subject to temperature and pressure. In 2008, research on Antarctic Vostok Station and EPICA Dome C ice cores revealed that methane clathrates were also present in deep Antarcticice cores and record a history of atmospheric methane concentrations, dating to 800,000 years ago.[8] The ice-core methane clathrate record is a primary source of data for global warming research, along with oxygen and carbon dioxide.
Methane clathrates used to be considered as a potential source of abrupt climate change, following the clathrate gun hypothesis. In this scenario, heating causes catastrophic melting and breakdown of primarily undersea hydrates, leading to a massive release of methane and accelerating warming. Current research shows that hydrates react very slowly to warming, and that it's very difficult for methane to reach the atmosphere after dissociation.[9][10] Some active seeps instead act as a minor carbon sink, because with the majority of methane dissolved underwater and encouraging methanotroph communities, the area around the seep also becomes more suitable for phytoplankton.[11] As the result, methane hydrates are no longer considered one of the tipping points in the climate system, and according to the IPCC Sixth Assessment Report, no "detectable" impact on the global temperatures will occur in this century through this mechanism.[12] Over several millennia, a more substantial 0.4–0.5 °C (0.72–0.90 °F) response may still be seen.[13]
^Chong, Z. R.; Yang, S. H. B.; Babu, P.; Linga, P.; Li, X.-S. (2016). "Review of natural gas hydrates as an energy resource: Prospects and challenges". Applied Energy. 162: 1633–1652. doi:10.1016/j.apenergy.2014.12.061.
^Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Chapter 5: Global Carbon and other Biogeochemical Cycles and Feedbacks"(PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 5. doi:10.1017/9781009157896.011.