In geometry, the midpoint-stretching polygon of a cyclic polygon P is another cyclic polygon inscribed in the same circle, the polygon whose vertices are the midpoints of the circular arcs between the vertices of P.[1] It may be derived from the midpoint polygon of P (the polygon whose vertices are the edge midpoints) by placing the polygon in such a way that the circle's center coincides with the origin, and stretching or normalizing the vector representing each vertex of the midpoint polygon to make it have unit length.