Moment (mathematics)

In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.

For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from 0 to ) uniquely determines the distribution (Hausdorff moment problem). The same is not true on unbounded intervals (Hamburger moment problem).

In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think systematically in terms of the moments of random variables.[1]

  1. ^ George Mackey (July 1980). "HARMONIC ANALYSIS AS THE EXPLOITATION OF SYMMETRY - A HISTORICAL SURVEY". Bulletin of the American Mathematical Society. New Series. 3 (1): 549.