Morita equivalence

In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent (denoted by ) if their categories of modules are additively equivalent (denoted by [a]).[2] It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.

  1. ^ Anderson & Fuller 1992, p. 262, Sec. 22.
  2. ^ Anderson & Fuller 1992, p. 251, Definitions and Notations.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).