Moser spindle | |
---|---|
Named after | Leo Moser, William Moser |
Vertices | 7 |
Edges | 11 |
Radius | 2 |
Diameter | 2 |
Girth | 3 |
Automorphisms | 8 |
Chromatic number | 4 |
Chromatic index | 4 |
Properties | planar unit distance Laman graph |
Table of graphs and parameters |
In graph theory, a branch of mathematics, the Moser spindle (also called the Mosers' spindle or Moser graph) is an undirected graph, named after mathematicians Leo Moser and his brother William,[1] with seven vertices and eleven edges. It is a unit distance graph requiring four colors in any graph coloring, and its existence can be used to prove that the chromatic number of the plane is at least four.[2]
The Moser spindle has also been called the Hajós graph after György Hajós, as it can be viewed as an instance of the Hajós construction.[3] However, the name "Hajós graph" has also been applied to a different graph, in the form of a triangle inscribed within a hexagon.[4]