Motivation-enhancing drug

Motivation-enhancing drug
Drug class
Dextroamphetamine, one of the most widely used motivation-enhancing drugs.
Class identifiers
SynonymsMotivation-enhancing agent; Motivation-enhancing medication; Pro-motivational drug;[1] Pro-motivational agent; Pro-motivational medication
UseTo increase motivation and treat disorders of diminished motivation
Legal status
In Wikidata

A motivation-enhancing drug,[2][3] also known as a pro-motivational drug,[1] is a drug which increases motivation.[4][1] Drugs enhancing motivation can be used in the treatment of motivational deficits, for instance in depression, schizophrenia, and attention deficit hyperactivity disorder (ADHD).[5][4] They can also be used in the treatment of disorders of diminished motivation (DDMs), including apathy, abulia, and akinetic mutism, disorders that can be caused by conditions like stroke, traumatic brain injury (TBI), and neurodegenerative diseases.[6][7] Motivation-enhancing drugs are used non-medically by healthy people to increase motivation and productivity as well, for instance in educational contexts.[8][1][9][10]

There are limited clinical data on medications in treating motivational deficits and disorders.[11][12] In any case, drugs used for pro-motivational purposes are generally dopaminergic agents, for instance dopamine reuptake inhibitors (DRIs) like methylphenidate and modafinil, dopamine releasing agents (DRAs) like amphetamine, and other dopaminergic medications.[4][1][13] Adenosine receptor antagonists, like caffeine and istradefylline, can also produce pro-motivational effects.[13][14][15][16] Acetylcholinesterase inhibitors, like donepezil, have been used as well.[17][18][6][11]

Some drugs do not appear to increase motivation and can actually have anti-motivational effects.[4][13][19] Examples of these drugs include selective serotonin reuptake inhibitors (SSRIs),[19][20][21] selective norepinephrine reuptake inhibitors (NRIs),[19] and antipsychotics (which are dopamine receptor antagonists or partial agonists).[22][23][24][25] Cannabinoids, for instance those found in cannabis, have also been associated with motivational deficits.[26][27][28][4][29]

  1. ^ a b c d e Hailwood JM (27 September 2018). Novel Approaches Towards Pharmacological Enhancement of Motivation (Thesis). University of Cambridge. doi:10.17863/CAM.40216. The ethical considerations of pharmacological enhancement of cognition in the healthy population have been debated elsewhere (Farah et al. 2004; Porsdam Mann & Sahakian 2015). It is likely that putative pro-motivational drugs deserve a similar level of scrutiny.
  2. ^ Zohny, Hazem (7 July 2015). "The Problem with Artificial Willpower". Scientific American. Retrieved 16 October 2024. The ethical threat posed by Adderall and other drugs that improve motivation [...] If it isn't justified – that is, if her options are limited purely due to unjust socio-political forces – then motivation enhancing drugs start to look more like political complacence pills. [...] It's the sort of spectre that permeates dystopian visions of the future, and it's one that is very much raised by the prospect of motivation enhancing drugs.
  3. ^ Ray, Keisha Shantel (2 January 2015). "Motivation's Pick-Me-Upper: Enhancing Performance Through Motivation-Enhancing Drugs". AJOB Neuroscience. 6 (1). Informa UK Limited: 50–51. doi:10.1080/21507740.2014.999888. ISSN 2150-7740.
  4. ^ a b c d e Salamone JD, Correa M (January 2024). "The Neurobiology of Activational Aspects of Motivation: Exertion of Effort, Effort-Based Decision Making, and the Role of Dopamine". Annu Rev Psychol. 75: 1–32. doi:10.1146/annurev-psych-020223-012208. hdl:10234/207207. PMID 37788571.
  5. ^ Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M (May 2016). "Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology". Brain. 139 (Pt 5): 1325–1347. doi:10.1093/brain/aww050. PMC 5839596. PMID 27189581.
  6. ^ a b Spiegel DR, Warren A, Takakura W, Servidio L, Leu N (January 2018). "Disorders of diminished motivation: What they are, and how to treat them" (PDF). Current Psychiatry. 17 (1): 10–18, 20.
  7. ^ Arnts H, van Erp WS, Lavrijsen JC, van Gaal S, Groenewegen HJ, van den Munckhof P (May 2020). "On the pathophysiology and treatment of akinetic mutism". Neuroscience and Biobehavioral Reviews. 112: 270–278. doi:10.1016/j.neubiorev.2020.02.006. hdl:2066/225901. PMID 32044373.
  8. ^ Kjærsgaard T (2 January 2015). "Enhancing Motivation by Use of Prescription Stimulants: The Ethics of Motivation Enhancement". AJOB Neuroscience. 6 (1): 4–10. doi:10.1080/21507740.2014.990543. ISSN 2150-7740.
  9. ^ Sharif S, Guirguis A, Fergus S, Schifano F (March 2021). "The Use and Impact of Cognitive Enhancers among University Students: A Systematic Review". Brain Sci. 11 (3): 355. doi:10.3390/brainsci11030355. PMC 8000838. PMID 33802176.
  10. ^ Brühl AB, d'Angelo C, Sahakian BJ (2019). "Neuroethical issues in cognitive enhancement: Modafinil as the example of a workplace drug?". Brain Neurosci Adv. 3: 2398212818816018. doi:10.1177/2398212818816018. PMC 7058249. PMID 32166175.
  11. ^ a b Cite error: The named reference StarksteinPahissa2018 was invoked but never defined (see the help page).
  12. ^ Cite error: The named reference ChongHusain2016 was invoked but never defined (see the help page).
  13. ^ a b c Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE (October 2018). "The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation". Pharmacol Rev. 70 (4): 747–762. doi:10.1124/pr.117.015107. PMC 6169368. PMID 30209181.
  14. ^ Cite error: The named reference TreadwaySalamone2022 was invoked but never defined (see the help page).
  15. ^ Cite error: The named reference FerréDíaz-RíosSalamone2018 was invoked but never defined (see the help page).
  16. ^ Cite error: The named reference López-CruzSalamoneCorrea2018 was invoked but never defined (see the help page).
  17. ^ Cite error: The named reference KrishnamoorthyCraufurd2011 was invoked but never defined (see the help page).
  18. ^ Cite error: The named reference MarinWilkosz2005 was invoked but never defined (see the help page).
  19. ^ a b c Cite error: The named reference SalamonePardoYohn2016 was invoked but never defined (see the help page).
  20. ^ Cite error: The named reference JawadFatimaHassan2023 was invoked but never defined (see the help page).
  21. ^ Cite error: The named reference MasdrakisMarkianosBaldwin2023 was invoked but never defined (see the help page).
  22. ^ Cite error: The named reference ThompsonStansfeldCooper2020 was invoked but never defined (see the help page).
  23. ^ Cite error: The named reference BelmakerLichtenberg2023 was invoked but never defined (see the help page).
  24. ^ Cite error: The named reference EcevitogluEdelsteinPresby2023 was invoked but never defined (see the help page).
  25. ^ Cite error: The named reference Mitola2023 was invoked but never defined (see the help page).
  26. ^ Skumlien M, Langley C, Lawn W, Voon V, Curran HV, Roiser JP, Sahakian BJ (November 2021). "The acute and non-acute effects of cannabis on reward processing: A systematic review". Neuroscience and Biobehavioral Reviews. 130: 512–528. doi:10.1016/j.neubiorev.2021.09.008. PMID 34509513.
  27. ^ Pacheco-Colón I, Limia JM, Gonzalez R (August 2018). "Nonacute effects of cannabis use on motivation and reward sensitivity in humans: A systematic review". Psychology of Addictive Behaviors. 32 (5): 497–507. doi:10.1037/adb0000380. PMC 6062456. PMID 29963875.
  28. ^ Skumlien M, Langley C, Sahakian BJ (19 December 2023). "Is Cannabis Use Associated with Motivation? A Review of Recent Acute and Non-Acute Studies". Current Behavioral Neuroscience Reports. 11: 33–43. doi:10.1007/s40473-023-00268-1. ISSN 2196-2979.
  29. ^ Silveira MM, Adams WK, Morena M, Hill MN, Winstanley CA (March 2017). "Δ9-Tetrahydrocannabinol decreases willingness to exert cognitive effort in male rats". J Psychiatry Neurosci. 42 (2): 131–138. doi:10.1503/jpn.150363. PMC 5373702. PMID 28245177.