Muckenhoupt weights

In mathematics, the class of Muckenhoupt weights Ap consists of those weights ω for which the Hardy–Littlewood maximal operator is bounded on Lp(). Specifically, we consider functions f on Rn and their associated maximal functions M( f ) defined as

where Br(x) is the ball in Rn with radius r and center at x. Let 1 ≤ p < ∞, we wish to characterise the functions ω : Rn → [0, ∞) for which we have a bound

where C depends only on p and ω. This was first done by Benjamin Muckenhoupt.[1]

  1. ^ Muckenhoupt, Benjamin (1972). "Weighted norm inequalities for the Hardy maximal function". Transactions of the American Mathematical Society. 165: 207–226. doi:10.1090/S0002-9947-1972-0293384-6.