Coordination of related astronomical observations
Multi-messenger astronomy is the coordinated observation and interpretation of multiple signals received from the same astronomical event. Many types of cosmological events involve complex interactions between a variety of astrophysical processes, each of which may independently emit signals of a characteristic "messenger" type: electromagnetic radiation (including infrared , visible light and X-rays ), gravitational waves , neutrinos , and cosmic rays . When received on Earth, identifying that disparate observations were generated by the same source can allow for improved reconstruction or a better understanding of the event, and reveals more information about the source.
The main multi-messenger sources outside the heliosphere are: compact binary pairs (black holes and neutron stars ), supernovae , irregular neutron stars, gamma-ray bursts , active galactic nuclei , and relativistic jets .[ 1] [ 2] [ 3] The table below lists several types of events and expected messengers.
Detection from one messenger and non-detection from a different messenger can also be informative.[ 4] Lack of any electromagnetic counterpart, for example, could be evidence in support of the remnant being a black hole.
^ Bartos, Imre; Kowalski, Marek (2017). Multimessenger Astronomy . IOP Publishing. Bibcode :2017muas.book.....B . doi :10.1088/978-0-7503-1369-8 . ISBN 978-0-7503-1369-8 .
^ Franckowiak, Anna (2017). "Multimessenger Astronomy with Neutrinos" . Journal of Physics: Conference Series . 888 (12009): 012009. Bibcode :2017JPhCS.888a2009F . doi :10.1088/1742-6596/888/1/012009 .
^ Branchesi, Marica (2016). "Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays" . Journal of Physics: Conference Series . 718 (22004): 022004. Bibcode :2016JPhCS.718b2004B . doi :10.1088/1742-6596/718/2/022004 .
^ Abadie, J.; et al. (The LIGO Collaboration) (2012). "Implications for the origins of GRB 051103 from the LIGO observations". The Astrophysical Journal . 755 (1): 2. arXiv :1201.4413 . Bibcode :2012ApJ...755....2A . doi :10.1088/0004-637X/755/1/2 . S2CID 15494223 .
^ Cite error: The named reference solarflare
was invoked but never defined (see the help page ).
^ Supernova Theory Group: Core-Collapse Supernova Gravitational Wave Signature Catalog
^ "No neutrino emission from a binary neutron star merger" . 16 October 2017. Retrieved 20 July 2018 .
^ IceCube Collaboration*†; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alispach, C.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C. (2022-11-04). "Evidence for neutrino emission from the nearby active galaxy NGC 1068" . Science . 378 (6619): 538–543. arXiv :2211.09972 . Bibcode :2022Sci...378..538I . doi :10.1126/science.abg3395 . hdl :1854/LU-01GSA90WVKWXWD30RYFKKK1XC6 . ISSN 0036-8075 . PMID 36378962 . S2CID 253320297 .
^ Staff (3 November 2022). "IceCube neutrinos give us first glimpse into the inner depths of an active galaxy" . IceCube . Retrieved 2022-11-23 .
^ Cite error: The named reference AT2019dsg
was invoked but never defined (see the help page ).
^ Reusch, Simeon; Stein, Robert; Kowalski, Marek; van Velzen, Sjoert; Franckowiak, Anna; Lunardini, Cecilia; Murase, Kohta; Winter, Walter; Miller-Jones, James C. A.; Kasliwal, Mansi M.; Gilfanov, Marat (2022-06-03). "Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino" . Physical Review Letters . 128 (22): 221101. arXiv :2111.09390 . Bibcode :2022PhRvL.128v1101R . doi :10.1103/PhysRevLett.128.221101 . hdl :20.500.11937/90027 . PMID 35714251 . S2CID 244345574 .