Multi-messenger astronomy

Multi-messenger astronomy is the coordinated observation and interpretation of multiple signals received from the same astronomical event. Many types of cosmological events involve complex interactions between a variety of astrophysical processes, each of which may independently emit signals of a characteristic "messenger" type: electromagnetic radiation (including infrared, visible light and X-rays), gravitational waves, neutrinos, and cosmic rays. When received on Earth, identifying that disparate observations were generated by the same source can allow for improved reconstruction or a better understanding of the event, and reveals more information about the source.

The main multi-messenger sources outside the heliosphere are: compact binary pairs (black holes and neutron stars), supernovae, irregular neutron stars, gamma-ray bursts, active galactic nuclei, and relativistic jets.[1][2][3] The table below lists several types of events and expected messengers.

Detection from one messenger and non-detection from a different messenger can also be informative.[4] Lack of any electromagnetic counterpart, for example, could be evidence in support of the remnant being a black hole.

Event type Electromagnetic Cosmic rays Gravitational waves Neutrinos Example
Solar flare yes yes - - SOL1942-02-28[5][failed verification]
Supernova yes - predicted[6] yes SN 1987A
Neutron star merger yes - yes predicted[7] GW170817
Blazar yes possible - yes TXS 0506+056 (IceCube)
Active galactic nucleus yes possible yes Messier 77[8][9] (IceCube)
Tidal disruption event yes possible possible yes AT2019dsg[10] (IceCube)

AT2019fdr[11] (IceCube)

  1. ^ Bartos, Imre; Kowalski, Marek (2017). Multimessenger Astronomy. IOP Publishing. Bibcode:2017muas.book.....B. doi:10.1088/978-0-7503-1369-8. ISBN 978-0-7503-1369-8.
  2. ^ Franckowiak, Anna (2017). "Multimessenger Astronomy with Neutrinos". Journal of Physics: Conference Series. 888 (12009): 012009. Bibcode:2017JPhCS.888a2009F. doi:10.1088/1742-6596/888/1/012009.
  3. ^ Branchesi, Marica (2016). "Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays". Journal of Physics: Conference Series. 718 (22004): 022004. Bibcode:2016JPhCS.718b2004B. doi:10.1088/1742-6596/718/2/022004.
  4. ^ Abadie, J.; et al. (The LIGO Collaboration) (2012). "Implications for the origins of GRB 051103 from the LIGO observations". The Astrophysical Journal. 755 (1): 2. arXiv:1201.4413. Bibcode:2012ApJ...755....2A. doi:10.1088/0004-637X/755/1/2. S2CID 15494223.
  5. ^ Cite error: The named reference solarflare was invoked but never defined (see the help page).
  6. ^ Supernova Theory Group: Core-Collapse Supernova Gravitational Wave Signature Catalog
  7. ^ "No neutrino emission from a binary neutron star merger". 16 October 2017. Retrieved 20 July 2018.
  8. ^ IceCube Collaboration*†; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alispach, C.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C. (2022-11-04). "Evidence for neutrino emission from the nearby active galaxy NGC 1068". Science. 378 (6619): 538–543. arXiv:2211.09972. Bibcode:2022Sci...378..538I. doi:10.1126/science.abg3395. hdl:1854/LU-01GSA90WVKWXWD30RYFKKK1XC6. ISSN 0036-8075. PMID 36378962. S2CID 253320297.
  9. ^ Staff (3 November 2022). "IceCube neutrinos give us first glimpse into the inner depths of an active galaxy". IceCube. Retrieved 2022-11-23.
  10. ^ Cite error: The named reference AT2019dsg was invoked but never defined (see the help page).
  11. ^ Reusch, Simeon; Stein, Robert; Kowalski, Marek; van Velzen, Sjoert; Franckowiak, Anna; Lunardini, Cecilia; Murase, Kohta; Winter, Walter; Miller-Jones, James C. A.; Kasliwal, Mansi M.; Gilfanov, Marat (2022-06-03). "Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino". Physical Review Letters. 128 (22): 221101. arXiv:2111.09390. Bibcode:2022PhRvL.128v1101R. doi:10.1103/PhysRevLett.128.221101. hdl:20.500.11937/90027. PMID 35714251. S2CID 244345574.