Multispectral imaging

Video by SDO simultaneously showing sections of the Sun at various wavelengths.
Multispectral image of part of the Mississippi River obtained by combining three images acquired at different nominal wavelengths (800nm/infrared, 645nm/red, and 525nm/green) by Apollo 9 in 1969.
Multispectral image of Bek crater and its ray system on the surface of Mercury, acquired by MESSENGER, combining images at wavelengths of 996, 748, 433 nm. The bright yellow patches in other parts of the image are hollows.

Multispectral imaging captures image data within specific wavelength ranges across the electromagnetic spectrum. The wavelengths may be separated by filters or detected with the use of instruments that are sensitive to particular wavelengths, including light from frequencies beyond the visible light range (i.e. infrared and ultraviolet). It can allow extraction of additional information the human eye fails to capture with its visible receptors for red, green and blue. It was originally developed for military target identification and reconnaissance. Early space-based imaging platforms incorporated multispectral imaging technology[1] to map details of the Earth related to coastal boundaries, vegetation, and landforms.[2] Multispectral imaging has also found use in document and painting analysis.[3][4]

Multispectral imaging measures light in a small number (typically 3 to 15) of spectral bands. Hyperspectral imaging is a special case of spectral imaging where often hundreds of contiguous spectral bands are available.[5]

  1. ^ R.A. Schowengerdt. Remote sensing: Models and methods for image processing, Academic Press, 3rd ed., (2007)
  2. ^ "13. Multispectral Image Processing | The Nature of Geographic Information". www.e-education.psu.edu. Retrieved 2019-11-14.
  3. ^ Cite error: The named reference Baronti was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference weiskott was invoked but never defined (see the help page).
  5. ^ Hagen, Nathan; Kudenov, Michael W. (2013). "Review of snapshot spectral imaging technologies". Optical Engineering. 52 (9): 090901. Bibcode:2013OptEn..52i0901H. doi:10.1117/1.OE.52.9.090901.