N-Methylphenethylamine

N-Methylphenethylamine[1]
Names
Preferred IUPAC name
N-Methyl-2-phenylethan-1-amine
Other names
N-Methyl-2-phenylethanamine
N-Methylphenethylamine
N-Methyl-β-phenethylamine
"Nymphetamine" [citation needed]
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.008.758 Edit this at Wikidata
UNII
  • InChI=1S/C9H13N/c1-10-8-7-9-5-3-2-4-6-9/h2-6,10H,7-8H2,1H3 checkY
    Key: SASNBVQSOZSTPD-UHFFFAOYSA-N checkY
  • InChI=1/C9H13N/c1-10-8-7-9-5-3-2-4-6-9/h2-6,10H,7-8H2,1H3
    Key: SASNBVQSOZSTPD-UHFFFAOYAA
  • CNCCc1ccccc1
Properties
C9H13N
Molar mass 135.210 g·mol−1
Appearance Colorless liquid
Density 0.93 g/mL
Boiling point 203 °C (397 °F; 476 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

N-Methylphenethylamine (NMPEA) is a naturally occurring trace amine neuromodulator in humans that is derived from the trace amine, phenethylamine (PEA).[2][3] It has been detected in human urine (<1 μg over 24 hours)[4] and is produced by phenylethanolamine N-methyltransferase with phenethylamine as a substrate, which significantly increases PEA's effects.[2][3] PEA breaks down into phenylacetaldehyde which is further broken down into phenylacetic acid by monoamine oxidase. When this is inhibited by monoamine oxidase inhibitors, it allows more of the PEA to be metabolized into nymphetamine (NMPEA) and not wasted on the weaker inactive metabolites.

PEA and NMPEA are both alkaloids that are found in a number of different plant species as well.[5] Some Acacia species, such as A. rigidula, contain remarkably high levels of NMPEA (~2300–5300 ppm).[6] NMPEA is also present at low concentrations (< 10 ppm) in a wide range of foodstuffs.[7]

NMPEA is a positional isomer of amphetamine.[8]

  1. ^ N-Methyl-phenethylamine at Sigma-Aldrich
  2. ^ a b Pendleton RG, Gessner G, Sawyer J (September 1980). "Studies on lung N-methyltransferases, a pharmacological approach". Naunyn-Schmiedeberg's Arch. Pharmacol. 313 (3): 263–8. doi:10.1007/bf00505743. PMID 7432557. S2CID 1015819.
  3. ^ a b Cite error: The named reference Trace Amines was invoked but never defined (see the help page).
  4. ^ G. P. Reynolds and D. O. Gray (1978) J. Chrom. B: Biomedical Applications 145 137–140.
  5. ^ T. A. Smith (1977). "Phenethylamine and related compounds in plants." Phytochemistry 16 9–18.
  6. ^ B. A. Clement, C. M. Goff and T. D. A. Forbes (1998) Phytochemistry 49 1377–1380.
  7. ^ G. B. Neurath et al. (1977) Fd. Cosmet. Toxicol. 15 275–282.
  8. ^ Mosnaim AD, Callaghan OH, Hudzik T, Wolf ME (April 2013). "Rat brain-uptake index for phenylethylamine and various monomethylated derivatives". Neurochem. Res. 38 (4): 842–6. doi:10.1007/s11064-013-0988-1. PMID 23389662. S2CID 18514146.