Nancy Grace Roman Space Telescope

Nancy Grace Roman Space Telescope
Rendered model of the Roman Space Telescope
NamesRoman
Roman Space Telescope
Wide-Field Infrared Survey Telescope (WFIRST)
Joint Dark Energy Mission (JDEM)
Mission typeInfrared space telescope
OperatorNASA / GSFC
Websiteroman.gsfc.nasa.gov
Mission duration5 years (planned)[1]
Spacecraft properties
ManufacturerNASA Goddard Space Flight Center
Launch mass4,166 kg (9,184 lb)[2]
Dry mass4,059 kg (8,949 lb)[2]
Payload mass2,191 kg (4,830 lb) (telescope & instruments)[2]
Power2.5 kW
Start of mission
Launch dateOctober 2026 (contracted) – May 2027 (commitment)[3]
RocketFalcon Heavy
Launch siteKennedy LC-39A
ContractorSpaceX
Orbital parameters
Reference systemSun–Earth L2 orbit
RegimeHalo orbit
Perigee altitude188,420 km (117,080 mi)
Apogee altitude806,756 km (501,295 mi)
Main telescope
TypeThree-mirror anastigmat
Diameter2.4 m (7.9 ft)
Focal ratiof/7.9
Wavelengths0.48–2.30 μm (Blue to Near-infrared)[4]
Transponders
BandS-band (TT&C support)
Ka-band (data acquisition)
BandwidthFew kbit/s duplex (S-band)
290 Mbit/s (Ka-band)
This visualization follows the Roman Space Telescope on its trajectory to the Sun–Earth Lagrange point L2.

The Nancy Grace Roman Space Telescope (shortened as Roman or the Roman Space Telescope, and formerly the Wide-Field Infrared Survey Telescope or WFIRST) is a NASA infrared space telescope in development and scheduled to launch to a Sun–Earth L2 orbit by May 2027.[5]

The Roman Space Telescope is based on an existing 2.4 m (7.9 ft) wide field of view primary mirror and will carry two scientific instruments. The Wide-Field Instrument (WFI) is a 300.8-megapixel multi-band visible and near-infrared camera, providing a sharpness of images comparable to that achieved by the Hubble Space Telescope over a 0.28 square degree field of view, 100 times larger than imaging cameras on the Hubble. The Coronagraphic Instrument (CGI) is a high-contrast, small field of view camera and spectrometer covering visible and near-infrared wavelengths using novel starlight-suppression technology.

Stated objectives[6] include a search for extra-solar planets using gravitational microlensing,[7] along with probing the chronology of the universe and growth of cosmic structure, with the end goal of measuring the effects of dark energy,[8] the consistency of general relativity, and the curvature of spacetime.

Roman was recommended in 2010 by the United States National Research Council Decadal Survey committee as the top priority for the next decade of astronomy. On 17 February 2016, it was approved for development and launch.[9] On 20 May 2020, NASA Administrator Jim Bridenstine announced that the mission would be named the Nancy Grace Roman Space Telescope in recognition of the former NASA Chief of Astronomy's role in the field of astronomy.[10] As of May 2024, Roman is scheduled to be launched on a Falcon Heavy rocket under a contract specifying readiness by October 2026[3] supporting a NASA launch commitment of May 2027.[11][12]

  1. ^ "WFIRST Observatory". NASA (GSFC). 25 April 2014. Archived from the original on 14 February 2015. Retrieved 14 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  2. ^ a b c "WFIRST-AFTA Science Definition Team Final Report" (PDF). NASA (GSFC). 13 February 2015. Archived (PDF) from the original on 5 April 2015. Retrieved 14 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  3. ^ a b "NASA Awards Launch Services Contract for Roman Space Telescope". NASA (Press release). 19 July 2022. Archived from the original on 7 August 2022. Retrieved 19 July 2022.
  4. ^ "Roman Wide-Field Instrument Reference Information" (PDF). 25 January 2021. Archived (PDF) from the original on 14 May 2021. Retrieved 9 January 2022.
  5. ^ "NASA Tool Gets Ready to Image Faraway Planets - NASA". 21 May 2024. Retrieved 21 May 2024.
  6. ^ "WFIRST-AFTA 2015 Report by the Science Definition Team (SDT) and WFIRST Study Office" (PDF). 10 March 2015. Archived (PDF) from the original on 9 October 2016. Retrieved 14 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  7. ^ New Worlds, New Horizons in Astronomy and Astrophysics. National Research Council. Washington, D.C.: National Academies Press. 2010. doi:10.17226/12951. ISBN 978-0-309-15802-2. Retrieved 14 March 2021.{{cite book}}: CS1 maint: others (link) Public Domain This article incorporates text from this source, which is in the public domain.
  8. ^ "Mission Overview". Nancy Grace Roman Space Telescope. NASA. Archived from the original on 4 September 2019. Retrieved 14 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  9. ^ "NASA Introduces New, Wider Set of Eyes on the Universe". 18 February 2016. Archived from the original on 22 February 2016. Retrieved 14 March 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  10. ^ Cite error: The named reference RomanSpaceTelescope was invoked but never defined (see the help page).
  11. ^ Hertz, Paul (12 June 2022). "NASA Astrophysics Update" (PDF). Archived (PDF) from the original on 19 July 2022. Retrieved 19 July 2022.
  12. ^ "NASA's Roman Space Telescope's 'Eyes' Pass First Vision Test - NASA". 17 April 2024. Retrieved 18 April 2024.